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Abstract

In this paper, we study Ricci-flat and Einstein—Lorentzian multiply warped products. We also
consider the case of having constant scalar curvatures for this class of warped products. Finally, after
we introduce a new class of space—times called as generalized Kasner space-times, we apply our
results to this kind of space—times as well as other relativistic space—times, i.e., Reissnerégrdstr
Kasner space-times, Bados—Teitelboim—Zanelli and de Sitter black hole solutions.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The concept of warped products was firstintroduced by Bishop and O’NeillXggeo
construct examples of Riemannian manifolds with negative curvature. In Riemannian ge-
ometry, warped product manifolds and their generic forms have been used to construct new
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examples with interesting curvature properties since then[{€#7,21,24,29,37,38,49—
51,54,57). In Lorentzian geometry, it was first noticed that some well known solutions
to Einstein’s field equations can be expressed in terms of warped produdi®]iand
after that Lorentzian warped products have been used to obtain more solutions to Ein-
stein’s field equations (s4&2,13,16,17,41,56,62] Moreover, geometric properties such
as geodesic structure or curvature of Lorentzian warped products have been studied by many
authors because of their relativistic applications (k&€5,10,11,14,15,19,20,25,27,29—
31,33,34,42,47,52,53,60,64—68,71)72]

We recall the definition of awarped product of two pseudo-Riemannian maniiglgg)
and (F, gr) with a smooth functior : B — (0, o) (see als$13,62]). Suppose thatg, gg)
and (F, gr) are pseudo-Riemannian manifolds and also suppos@ that— (0, co) is a
smooth function. Then the (singly) warped prodgtx , F is the product manifold® x F
equipped with the metric tensgr= gp @ b%gr defined by

g =7"(g5) ® (b o m)°0*(2r),

wherer : Bx F — B ando : B x F — F are the usual projection maps ardlenotes
the pull-back operator on tensors. HerR, £r) is called as the base manifold and ¢ r)
is called as the fiber manifold and alsds called as the warping function.

Generalized Robertson-Walker space-time models[&&#&,33,65,67,68]and stan-
dard static space—time models ($8€5,52,53] that are two well known solutions to Ein-
stein’s field equations can be expressed as Lorentzian warped products. Clearly, the former
is a natural generalization of Robertson—Walker space—time and the latter is a generalization
of Einstein static universe. One way to generalize warped products is to consider the case of
multi fibers to obtain more general space—time models (see examples gettion 2 and
in this case the corresponding product is so called multiply warped prodiié2]ircovari-
ant derivative formulas for multiply warped products are given and the geodesic equation for
these spaces are also considered. The causal structure, Cauchy surfaces and global hyper-
bolicity of multiply Lorentzian warped products are also studied. Moreover, necessary and
sufficient conditions are obtained for null, time-like and space-like geodesic completeness
of Lorentzian multiply products and also geodesic completeness of Riemannian multiply
warped products. Ifl9,20], the author studies manifolds wittf -metrics and properties
of Lorentzian multiply warped products and then he shows a representation of the interior
Schwarzschild space—time as a multiply warped product space—time with certain warping
functions. He also gives the Ricci curvature in termégfb, for a multiply warped prod-
uct of the formM = (0, 2m) x,, R* x,, S? . In [42], physical properties (2 1) charged
Bahados—Teitelboim—Zanelli (BTZ) black holes andf{2) charged de Sitter (dS) black
holes are studied by expressing these metrics as multiply warped product space—times, more
explicitly, Ricci and Einstein tensors are obtained inside the event horizons (sg8]also
In [66], the existence, multiplicity and causal character of geodesics joining two points of
a wide class of non-static Lorentz manifolds such as intermediate Reissner—Biordstr
inner Schwarzschild and generalized Robertson—Walker space—times are stufddl. In
geodesic connectedness and also causal geodesic connectedness of multi-warped space—
times are studied by using the method of Brouwer’s topological degree for the solution of
functional equations. There are also different types of warped products such as a kind of
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warped product with two warping functions acting symmetrically on the fiber and base man-
ifolds, called as a doubly warped product (§&H) or another kind of warped product called
as a twisted product when the warping function defined on the product of the base and fiber
manifolds (se¢32]). Moreover, Easley studiddcal existence warped product structures
and also defined and considered another form of a warped product in his the$28{see

In this paper, we answer some questions about the existence of nontrivial warping func-
tions for which the multiply warped product is Einstein or has a constant scalar curvature.
This problem was considered especially for Einstein Riemannian warped products with
compact base and some partial answers were also provide[B8468-51). In [50], it is
proved that an Einstein Riemannian warped product with a non-positive scalar curvature and
compact base is just a trivial Riemannian product. Constant scalar curvature of warped prod-
ucts was studied if22,24,29,30when the base is compact and of generalized Robertson—
Walker space—times if29]. Furthermore, partial results for warped products with non-
compact base were obtained[i)18]. The physical motivation of existence of a positive
scalar curvature comes from the positive mass problem. More explicitly, in general relativity
the positive mass problem is closely related to the existence of a positive scalar curvature (see
[75]). As a more general related reference, one can congl8@gto see a survey on scalar
curvature of Riemannian manifolds. The problem of existence of a warping function which
makes the warped product Einstein was already studied for special cases such as generalized
Robertson—Walker space—times and a table given the different cases of Einstein generalized
Robertson—Walker when the Ricci tensor of the fiber is Einstej8]iisee also references
therein). Einstein—Ricci tensor and constant scalar curvature of standard static space—times
with perfect fluid were already considered%2,60] Moreover, in53], the conformal ten-
sor on standard static space—times with perfect fluid is studied and it is shown that a standard
static space—time with perfect fluid is conformally flat if and only if its fiber is Einstein and
hence of constant curvature.[RB], this problem is considered for arbitrary standard static
space—times, more explicitly, an essential investigation of conditions for the fiber and warp-
ing function for a standard static space—time (not necessarily with perfect fluid) is carried
out so that there exists no nontrivial function on the fiber guaranteeing that the standard
static space—time is Einstein. Duggal studied the scalar curvature of four-dimensional triple
Lorentzian products of the forh x B x ¢ F and obtained explicit solutions for the warping
functionf to have a constant scalar curvature for this class of product{2gge More-
over, in the present paper, we introduce an original form to generalize Kasner space—times
and then we obtain necessary and sufficient conditions as well as explicit solutions, for
some special cases, for a generalized Kasner space—time to be Einstein or to have constant
scalar curvature. Besides than the form mentioned here, there are also other generalizations
in the literature (se@3,55). In [43], an extension for Kasner space-times is introduced
in the view of generalizing five-dimensional Randall-Sundrum model to higher dimen-
sions and irf{55], another multi-dimensional generalization of Kasner metric is described
and essential solutions are also obtained for this class of extension. One can also consider
[23,36,44,45,58,63,73pr recent applications of Kasner metrics and its generalizations.

We organize the paper as follows. Section 2 we give several basic geometric facts
related to the concept of curvatures (B&&72)). Moreover, we recall two well known exam-
ples of relativistic space—times which can be considered as generalized multiply Robertson—
Walker space—times. Bection 3we obtain two results in which, under several assumptions
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Table 1
¢ n {% A Ay p1 P2 Metric %)
0 0 - 0 0 0 0 —d? + sn +r, -
0 %pf;éo - 0 0 £0 —%pl —d? + o er + 0y "tgr,  @o=cte >0
0 3p2#£0 - - #0 #0 -—ip No metric -
£0 ¢ 1 0 0 #0 0,-2p1 —0 +¢?Prgp +¢?P2gp,  (¢50)
#0 2 1 #0 2 #0 0 —di? + 9?Pigp + gR (¥ 1)
#0  #0 #1 0 0 p #0 —d2 + 93" gr + 05%8r, g0 =cle>0
#£0  #0 #1 0 <0 0  #0 —d2 + g, + ¢P2gp, (¢"/%;0)
#0  #0 #1 >0 0  p #0 42+ gy + Pgr,  (0Fi30i%)
#0 #0 #1 #0 #0 p1 #0 No metric -
Table 2
¢ n e TR 21 P2 g eq.
0 0 - TR, 0 0 T=1p

2
0 30 - 0 #0 —3p1 =)

"2
0 i - 0 #0  —gp r=nr 4+
r#£0 I 1 0 £0 0 —2u" = —tu;u = ¢*
c#£0 ;2 1 0 #0 —2p1 —2u" = —tu,u = ¢t
¢#0 2 1 #0 #0 0 —2u" = —(t — tR,)iu = ¢f
¢#0 2 1 £0 #£0 —2p1 —2u" = —tu + tru Y3 u = ¢t
C#0 n#0 #£1 0 1 £0 (5.1 u= (¢:)<1+n/:2)/2
¢£0  n£0  #14 £0  p #0 (cSCK-ILC ) u = () A/
t40 & : 40 & § ~3u" = —u + Ty = 2

on the fibers and warping functions, multiply generalized Robertson—Walker space—times
are Einstein or have constant scalar curvatur&dation 4 after we introduce generalized
Kasner space—times, we state conditions for this class of space—times to be Einstein or
to have constant scalar curvature. Saction 5 we give an explicit classification of four-
dimensional multiply generalized Robertson—Walker space—times and four-dimensional
generalized Kasner space—times which are Einstein. In the last section, we focus on BTZ
(24 1) -black hole solutions and classify (BTZ) black hole solutions giveBeuation 2

by using a more formal approach (48¢9,42,59) and then we also prove necessary and
sufficient conditions for the lapse function of a BTZ{21) black hole solution to have a
constant scalar curvature or to be Einstein. Our main results are obtaiSedtions 3—5
especially se@heorem 3.3Propositions 4.3 and 4.1ds well asTables 1-3

Table 3

¢ n 2 A p1 p2 ps Metric ¢

0 0 - 0 0 0 0  —d?+gp +gr, + gr -

0 #0 - 0 p1 2 ps —O2+ @i gr + 0528 05, po=cle>0
#0 2 1 0 p1 p2 p3 02+ Pigp +¢P2gp, +¢3gr  (¢4;0)

#0 #0 #1 0 pi p2 ps —d2+ @i ek + 0 Per, + 9P go=cte>0
#0 #£0 #£1 >0 p1 p1 pr 0P+ ¢Pigp +9Pigp, +¢PPgp (¢5:30%)
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2. Preliminaries

Throughout this work any manifolel is assumed to be connected, Hausdorff, paracom-
pact and smooth. Moreovdr,denotes for an open interval R of the form I = (¢1, 12)
where—oco < 11 < 12 < oo and we will furnishl with a negative metrie-ds% . A pseudo-
Riemannian manifold\{, g) is a smooth manifold with a metric tenspand a Lorentzian
manifold (M, g) is apseudo-Riemanniamanifold with signature{, +, +, ..., +) . More-
over, we use the definition and the sign convention forctiweatureas in[13]. For an arbi-
traryn-dimensional pseudo-Riemannian manifdii ¢) and a smooth functiofi : M — R
, we have that M and A( 1) denote thédessian(0, 2) tensor and the Laplace—Beltrami op-
erator off, respectively62]. Here, we use the sign convention for the Laplacigdéfj, i.e.,
defined byA = trg(H) (see p. 86 of62]) where H is the Hessian form (see p. 8q&2])
and tr, denotes for the trace, or equivalently,= div(grad) , where div is the divergence
and grad is the gradient (see p. 89@#]). Furthermore, we will frequently use the notation
llgradf||? = g(gradf grad f) . When there is a possibility any misunderstanding, we will
explicitly state the manifold or the metric for which the operator is considered.

We begin our discussion by giving the formal definition of a multiply warped product
(se€[72]).

Definition 2.1. Let (B, gg) and (F;, gr;) bepseudo-Riemanniamanifolds and also le; :

B — (0, 00) be smooth functions for anye {1, 2, ..., m} . Themultiply warped product
is the product manifoldM = B x F1 x F x --- x F,, furnished with the metric tensor
g=880 b%gFl 2] b%ng ® - @ b2 gr, defined by

g =7"(g) ® (b107)°07(21) ® - -+ @ (b © m)°07(2F,)- (2.1)

Each functionb; : B — (0, o) is called awarping function and also each manifold
(F;, gr;) is called a fiber manifold for anye {1, 2, ..., m} . The manifold B, gp) is the
base manifold of the multiply warped product:

e If m =1, then we obtain aingly warped product

e [fall b; =1, then we have a (triviaProduct manifold

e If(B, gg) and (F;, gr;) are allRiemanniammanifolds forany € {1, 2, ..., m} , then M,
0) is also aRiemanniarmanifold.

e The multiply warped product\, g) is aLorentzian multiply warped produdt( 7;, gr;)
are allRiemanniarfor anyi € {1, 2, ..., m} and either B, gp) is Lorentzianor else
(B, gp) is a one-dimensional manifold withreegative definitenetric —dr? .

e |f Bis an open connected interabf the formI = (1, #2) equipped with the negative
definite metricgpg = —dr?2 , where—co <1 < 2 < 00, and i, gr.) is Riemannian
foranyi € {1, 2, ..., m}, then the Lorentzian multiply warped produb,(g) is called

a multiply generalized Robertson—Walker space—time or a multi-warped space—time. In
particular, a multiply generalized Robertson—Walker space—time is called a generalized
Reissner—Nordsbm space-time whein = 2 .
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We will state the covariant derivative formulas fonultiply warped products(see
[19,70,72).

Proposition 2.2. Let M = B x j, F1 x --- x p, F, be a pseudo-Riemannian multiply
warped product with metri¢ = gp ® b%gpl ®---®blgr, also letX,Y e £(B) and
Ve L(F),WeL(F;).Then

(1) VxYy = VEy.
(2) VxV = VyX = ﬁb‘llv .
if i # J,
{V@'W (VW)gradB biifi=]
One can compute thgradientand theLaplace—Beltramoperator orM in terms of the

gradientand theLaplace—Beltrambperator orB and F; , respectively. From now on, we
assume that = Ay and grad= grad,, to simplify the notation.

(3) VyW =

Proposition 2.3. Let M = B x j, F1 x --- x p, F, be a pseudo-Riemannian multiply
warped product withmetrig = g ® b%gp1 DD b,igpm and¢ : B— Randy, : F; —
R be smooth functions for anye {1, ..., m} . Then

(1) gradg o 7) = gradgz¢ .

rad ,1//1'
(2) gradg; o o) = Rl
m 4o, b
() A(pon) = AB¢+;si gp(gra BZ gradgh;) .
A i
(@) AW o) = ;_2‘/’ .

Now, we will stateRiemannian curvaturandRicci curvatureformulas from[70].

Proposition 2.4. Let M = B x j, F1 x --- x p, F, be a pseudo-Riemannian multiply
warped product with metrig = gg @ b2gr, @ - -- ® b2, g, also letX, Y, Z € £(B) and
Ve £(F), W e £(F;)andU < £(Fy) . Then

(1) R(X.Y)Z = Rs(X. V)Z.

(2) RV, X)y = — i Ry,

(3) R(X, V)W = R(V. W)X = R(V, X)W = Oif i # ] .

(4) R(X,Y)V =0.

(5) R(V, W)X = 0ifi = j.

(6) R(V, W)U = 0if i = jandi, j #k .

(7) RU. V)W = —g(V, W)$LQrakPu0ba) 1yt j — jandi, j # & .
8) R(X. V)W = LGV E(gradyh;) if i = ;.

(9) R(V. W)U = Rr, (V. W)U + 195 U (o(v, LYW — g(W, U)V) if i, j = k.
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Proposition 2.5. Let M = B x j, F1 x --- x p, F, be a pseudo-Riemannian multiply
warped product with metrig = g5 ® b2gr, @ --- @ b2 gF, , also letX, ¥, Z € £(B) and
Ve £(F;)andW € £(F;) . Then

(1) Ric(X. ¥) = Rics(X. V) - 3 ngg(x, Y).

(2) Ric(X, V) = =

(3) Ric(V, W) = 0if i # j .

(4) Ric(V, W) = Ricr,(V, W) — 22 + (5; — 1)l

i

m
radgb;, gradgb
n Z SkgB(g ybi, gradgby)
4 biby
k=1, k=i
Now, we will compute thescalar curvatureof amultiply warped productin order to do
that, one can use the followirarthonormal frameon M constructed as follows.

Let {a Toenes %r} and { Bl BBs,- be orthonormal frames on open sétsc B
Vi

g(V.W)ifi=j.

andV; C F; , respectively, for anye {1,...,m}.Then

9 K 0 0 i
axl,..., ax"’blay%"“’blﬁyil""’bmaym""’ bmay;;n

is an orthonormal frame on an open 8etC B x F contained inU x V C B x F , where
F=F1x---x Fy,

Proposition 2.6. Let M = B x j, F1 x --- x p, F, be a pseudo-Riemannian multiply
warped product with metrig = g ® b%gp1 D P b,igpm . Then t admits the following
expressions

1)
N Aphi  =TE lgradsb;|2
r—rB—Z;s, b +,1b,2_,1s S; — )%
_zm: z’": s gB(gradel,gradek)’
i—1 k=L k=i bibi
2

m
Agb; radyb
i S ) il
i=1 i=1 l

- radyb; ad,b "L TR
_g3<zsi9 biB Z gr B ) Z e

i=1 i=1 i=1




82 F. Dobarro, B.Unal / Journal of Geometry and Physics 55 (2005) 75-106

The following formula can be directly obtained from the previous result and noting that
on a multiply generalized Robertson—Walker space—time gdrag —b, , ||grade,-||% =
()2, g5 (2. L) =1, H}: (2, 2) = b/ andAgb; = —b] , we denote the usual deriva-
tive on the real interval by the prime notat|0n (i.e,) from now on.

Corollary 2.7. LetM =1 x p F1 x--- xy, Fy be a muIt|pIy generalized Robertson—

m

Walker space—time with the metgc= dt2 @ b2gr, - @ b2 gF, . Then r admits the

following expressions
(b ) b/b;
s,(sl Z Z bzbk’
i=1 k=1k#i

1) T= 2Zs, Z 2
m b// m b/ m ; m

@ =Yl (zb> (zsl Vs
i=1 ! i=1 !

i=1

We now give some physical examples of relativistic space-times and state some of
their geometric properties to stress the physical motivation and importance of Lorentzian
multiply warped products. The first example is Schwarzschild black hole solution or known
as inner Reissner—Nordstn space—time and the second one is Kasner space—time. Our
last two examples are closely related to each other, more explicitly, the third example is
Bafados—Teitelboim—Zanelli (BTZ) black hole solution and the final example is de Sitter
(dS) black hole solution.

e Schwarzschild space—time
We will briefly discuss the interior Schwarzschild solution. We show how the interior
solution can be written as a multiply warped product.
The line element of th&chwarzschild black holspace-time model for the region
r < 2m is given as (seftl))

2 2
ds? = — (’" _ 1> ar + (m - 1> di? + r2 de?.
r

r

where d22 = d#? + sin? 9 dg? on 2 .
In [19], it is shown that this space—time model can be expressed as a multiply gener-
alized Robertson—-Walker space—time, i.e.,

ds? = —dr? + b2(t) dr? + b3(r) d22,

where  bi(t) = %’—1”([)—1 and by(r)=F ) , also t=F(@)=

2marccos<. [ £ ) Jr@2m —7r) such that lim.,, F(r)=mnr  and
lim, o F(r) =

Moreover, we also need to impose the above multiply generalized Robertson—Walker
space—time model for tiechwarzschild black hote be Ricci-flat due to the fact that the
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Schwarzschild black holis Ricci-flat (see also the review of MiguebBchez in AMS
for [19]).
Kasner space—time

We consider th&Kasnerspace—time as horentzianmultiply warped product (see
[61]).

A Lorentzian multiply warped productM, g) of the form M = (0, o0) x ;,1R x
»2R x 3R with the metricg = —dr? @ r2P1 dx? @ r2P2 dy? @ 273 dz? is said to be the
Kasnerspace—time i1 + p2 + p3 = (p1)? + (p2)? + (p3)? = 1 (se€46]).

It is known by[40] that—% < p1, p2, p3 < 1. Itis also known that, excluding the
case of twap; 's zero, then ong; is negative and the other two are positive. Thus we may
assume thaP% < p1 < 0 < p2 < p3 < 1 by excluding the case of twp; 's zero and
onep; equal to 1. Furthermore, the only solution in whigh= p3is given byp; = —%
andp, = p3 = . Note also that since < p1, p2, ps < 1, we have to assunito
be (Q c0) . Clearly, theKasnerspace—time iglobally hyperboliqsee[72]).

By making use of the results {72], it can be easily seen that tk&asnerspace—
time is future-directed time-like and future-directed null geodesic complete but it is
past-directed time-like and past-directed null geodesic incomplete. Moreover, it is also
space-like geodesic incomplete.

Notice that the Kasner space—time is Einstein witk 0 (i.e., Ricci-flat) (se¢46]
and p. 135 of/56]) and hence has constant scalar curvature as zero. This fact can be
proved as a particular consequence of our results in the next section, namely by using
Theorem 3.3
Static Baflados—Teitelboim—Zanelli (BTZ) space—time

In [42], authors classify (BTZ) black hole solutions into three different classes as
static, rotating and charged. Here, we will only give a brief description of a static BTZ
space—time in terms of Lorentzian multiply warped products, i.e., multiply generalized
Robertson-Walker space—times (see §&86,59). The line element of a static BTZ
black hole solution can be expressed as

ds? = —N2dr? + N2df? + r2d2?,

where d22 = d#? + sir? 6 dp? on 2 .
The line element of th8tatic BTZ black holspace—time model for the region< ry
can be obtained by taking

72

2 _

Inthis case, the space—time model can be expressed as a multiply generalized Robertson—
Walker space-time, i.e.,
ds? = —dr? + b2(r) dr? + b3(r) d$22,

where ry = 1/m , bi(t) = y/m — ﬁF;llz@Lz and ba() = F~1(r) , alsot = F(r) =
larcsin(i) such that lim_..,,, F(r) = Z and lim._.o F(r) = 0.
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Here, note that the constant scalar curvatuséthe multiply generalized Robertson—
Walker space-time introduced above is —6/ 12 (see[42]) or applyCorollary 2.7
Note that, in[42], they also classify (dS) black hole solution into three classes as
static, rotating and charged, similar to (BTZ) black hole solutions [&8e59).
We now state a couple of results which we will frequently be applied along this article.
The first one is an easy computation which we will show explicitly below. Mgt (
g) be ann-dimensional pseudo-Riemannian manifold. For agyR andv € C24(B) =
fve C®(B):v=>0}:

grad,v’ = '~ grad,v, Agv' =1[(t — I ?|gradu2 + vt A],

=1 ——m—

A rad,v A
v ¢ dg || Agv 2.2)
v v

The second one is a lemma that follows (for a proof and some extensions as well as
other useful applications, see Section 22§]).

Lemma 2.8. Let(M, g) be an n-dimensional pseudo-Riemannian manifold./Lebe a
differential operator orC2,(M) defined by

k .
Avt
Lgv= E Vi g? ) (2.3)

Vi

i=

wherer;, ; € Rand¢ := S5 ria; , := S+_  ria? . Then

: lgradyvll; =~ Agv
0) Lev=(n— q)% +e— (2.4)
(i) If ¢ #0andn#0,fora = andg = % , then we have
A Ul/oz
Lgv = ﬂijl/oz (25)

3. Special multiply warped products
3.1. Einstein—Ricci tensor

In this section, we state some condition to guarantee thatuliiply generalized
Robertson-Walker space-tinsRicci-flator Einstein

Now, we recall some elementary facts about Einstein manifolds starting from its defini-
tion.

Recall that am-dimensional pseudo-Riemannian manifdil @) is said to be Einstein
if there exists a smooth real-valued functionn M such that Ric= Ag , anda is called the
Ricci curvature of i, g) (see also p. 7 d6]).

Remark 3.1. Concerning to this notion, it should be pointed out:
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(1) If (M, g)is Einstein andk > 3, thenk is constant and = t/n , wherer is the constant
scalar curvature of\, g).

(2) If (M, g) is Einstein andi = 2, thena is not necessarily constant.

(3) If (M, g) has constant sectional curvatlgehen M, g) is Einstein withA = k(n — 1)
and has constant scalar curvatare n(n — 1)k .

(4) (M, g) is Einstein with Ricci curvature andrn = 3, then M, g) is a space of constant
(sectional) curvature k= /2 .

(5) If (M, g) is a Lorentzian manifold therM, g) is Einstein if and only if Ric(, v) = 0
for any null vector fieldr on M.

By using Proposition 2.5we easily obtain th&®icci curvatureof Lorentzian multiply
warped products(M, g) of the above form.

Proposition 3.2. LetM =1 x p F1 x--- x, Fy be a multiply generalized Robertson—
Walker space—time with the metric= dt2 ® bng1 @ - @ blgr, also letd e X(I)
andv; € X(F;) ,foranyi e {1,...,m} . Iffv=>"}" v € 3€(F) then

ad d
Ric| — , —
(E)t+v 8t+v>
m /

m
. b
= Z RICFi(UZ‘, Vi) + b,‘b;/ + (s; — l)(b;)2 + b,‘b; Z Skbfk
i—1 k=Lkti K
/./

x gr(vi, v;) —sib—f
1

Proof. By substituting X = o 0 45 v andY = az + > 4v and by noting that

gradgh; = b} , g5 (2. 3) = —1, ga(gradh;. gradsh;) = —(b))> , H (2. 2) = b},
Apb; = —b! and Rig; (2, &) = 0 and by usinProposition 2.5we obtain the result.

The following result can be easily proved by substituting=0 for any j e

{1,...,m}N\{i} andv; # 0, in Proposition 3.2along with the method of separation of
variables.

Theorem 3.3. LetM =1 x, F1 x --- x 3, Fy, be a multiply generalized Robertson—
Walker space—time with the metrgc_ —dt2 <) blgpl ®---®blgr, . The space-time
(M, g) is Einstein with Ricci curvaturg if and only if the following conditions are satisfied
foranyi e {1, ..., m}

(1) each flber(F,, gr;) is Einstein with Ricci curvaturg g, for anyi € {1, ..., m},
(2 > 1s,b =A,and

b/
(3) A + bib] + (si = DYB)? + bib} Sy sy Sz = M7
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Remark 3.4. In Theorem 3.3Eg. (3) can be expressed in different forms and here we want
to present some of them. By applyiig. (2.2) we can have

P N (1) A AN 4 ,
’—i—— +f Z Sk = A, (Egrw-i)
2 g

bs by bi T by

or equivalently:
AF b” ) b b, y
b2 blZ + E;ZSkFi =A. (Eng-II)
i k=1

3.2. Constant scalar curvature

It is possible to obtain equivalent expressions for the scalar curvat@eriilary 2.7
namely the following just follows fronkq. (2.2)

m 17" SiN// m m m an
T= Z [s,lz) (b ) } Z% Z Z b b . (SCgRW'i)
i i=1 k=1k

; i
i=1 i=1

Since 2; # 0 ands; + sZ = s5;(s; + 1) £ 0, byLemma 2.8there results

As: (b(Vr+1)/2)// m b/ b/ )
S SR L AL S SR S O L )
ey O
Thus, definingy; = b ™% | results

. i 4s;
i=1 Si +

Z Iﬂ4/(sl+1)

(wiz/(si'i‘l))/ (wf/(fk"rl))/
DD, s 2641 2D (scgrw-iii)
i=1 k=1 ki Vi Vi
Note that whem: = 1 this relation is exactly that obtained[i4,26]when the base has
dimension 1.
The following result just follows from the method of separation of variables and the fact
that eachrr, : F; — R is a function defined off; , for anyi € {1, ..., m} .

Proposition 3.5. LetM =1 x p, F1 X -+ X bmF be a multiply generalized Robertson—
Walker space—time with the metrgc= dt2 &) blgpl ® - ®b2gr, . If the space~time
(M, g) has constant scalar curvaturethen each fiberfj, g B) has constant scalar curvature
tg, , foranyi e {1,...,m}.

As one can notice from the above formula, it is extremely hard to determine general
solutions for warping functions which produce an Einstein, or with constant scalar curva-
ture multiply generalized Robertson—Walker space—time. Note that non-linear second order
differential equations need to be solved accordihgorem 3.3Further note that there is
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only one differential equation amddifferent warping functions i€orollary 2.7 Therefore
instead of giving a general answer to the existence of warping functions to get an Einstein,
or with constant scalar curvature, space—time, we simplify this problem and consider some
specific cases in mention&kctions 4 and.5

4. Generalized Kasner space—time

In this section we give an extension of Kasner space—times and consider their scalar and
Ricci curvatures.

Definition 4.1. A generalized Kasner space—tin, () is a Lorentzian multiply warped
productofthe formV = I x yr1 F1 X - -+ X yom Fyy With the metricg = —di? @ p?P1gp

@ ¢?Prgr , wherep : I — (0, co) is smooth angh; € R, for anyi € {1, ..., m} and
alsol = (t1, t2) with —oco <11 < 2 < 00.

Notice that a Kasner space—time can be obtained out of a form defined above by taking
¢ = Id(g o) With m = 3 andl = (0, co) , whereld(g ) denotes for the identity function
on (0 oo) (se€g[40]).

From now on, for an arbitrary generalized Kasner space-time of the form in
Definition 4.1, we introduce the following parameters

ci=> s and ni=> spi. &)
=1 =1

Remark 4.2. Note that; # 0 impliesn # 0 and in this case, definingy= > ;" ; s; , results
;% > % . The latter is for example consequence of thider inequality (compare with p.
186 of[35]).

By applyingTheorem 3.3we can easily state the following result and later we will examine
the solvability of the differential equations therein.

Proposition 4.3. LetM =1 x 4, F1 x --- x o, F,, be a generalized Kasner space—time
with the metricg = —dr?> @ ¢?P1gp, @ --- @ ¢?PmgF, . Then the space-timgM, g) is
Einstein with Ricci curvature if and only if

(1) each fiber(F;, gF;) is Einstein with Ricci curvaturer, for anyi € {1, ..., m},
m pry/

2) A—Zs @ ) =(n —C)@+§— and
I=1

(3 2p, + pi {(f 1)((/7) + ¢ ] =A.
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Remark 4.4. Moreover, ifinProposition 4.3ve assume that# 0 also, then bRemark 4.2
isn # 0. Hence, (3) is equivalent to

b, i@ £
2pi ¢ T ( )
L S
and (2) is equivalent to
n
&2 (¢9)" 2
A= (ES-)
n (p!

Proof (of Proposition 4.2andRemark 4.4. In order to prove (3), note that EqE{rw-i )
says

AR 1 (pPisi)’ riy Py
ro L) (@) Zs(so):

2p; _ i ; k
g s et 2 k=1kei PP
Hence, byEg. (2.2)
AF, (¢')? @" ¢ < ¢
o+ pilpisi — 1)— + pi— + pi— SkPk— = A
¢ ¢ k=1,ki
and from here
AF; m ((,0/)2 o
——+pi |(pisi — 1)+ Z Sk Pk =+ pi— =X
oo k=1 keti ¢ ¢
So
AF; 2 (p//
(p2p + pi ( 1+Zskpk) - = A
and by the definition of
AF: 2 //
i [( (<ﬂ) } L
) Pi

If furthermore¢ # 0, applying agairkq. (2.2) results(E(S) i).
On the other hand, from (2) dfheorem 3.3

_ zm: @

1Z
=1 ¢
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and byLemma 2.8a):

2 7
WF 7
% %

A=m-9)

Hence, if¢ # 0 and as consequenge# 0, applyingLemma 2.8b), results(Ei,z,z-i ).

Note that, from now on and also including the previous result, when we apptyna 2.8
we denote the usual derivative in equations by means of the prime notation.

Remark 4.5. Note that the conditions # 0 andn # 0 agree with the conditions usually
imposed in the classical Kasner space—times, namel po + p3 =1 andp% + p% +

p% =1 (see[46]). It is easy to show that the unique possibility to construct an Einstein
classical Kasner manifold or a constant scalar curvature classical Kasner manifold with
p1+ p2+ p3=0is p1 = p» = p3 =0, so that we have just a usual product. Indeed,
consideringyp(r) = ¢ , it is possible to applyProposition 4.3and laterProposition 4.11
respectively.

Corollary 4.6. Under the hypothesis dfroposition 4.3along with¢ 0 andn #£0 .
Assume also that for all t — p; # 0andn — p;¢ # 0. Then M is Einstein if and only if
foranyi € {1,...,m}, (F;, gr,) is Einstein Ricci curvature r, and
(DA AF,
n—rpic ¥ Y@=/ =pic)2pi’

(4.2
where0 < v 1= U1=pid)/(i=pi) |
Proof. Indeed, from equatior(s?f}%-i) and(Ef,g-i ):

Ap 2@ pi (e8!
(pZPi n gon/f é‘ gof ’

Thus, since for all, ¢ — p; # 0 andn — p;¢ # 0, then applyind.emma 2.8the result just
follows.

Example 4.7. Under the conditions of the classical Kasner metriess 3 , p1 + p2 +
p3=landp? + p3 + p =1, we have.y, = 0,¢ = 1 andy = 1. Hence the hypothesis
¢ — pi # 0andny — p;¢ # 0, for alli, implies thatp; # 1 for alli. In this case, Eq. (4.1) is
equivalenttoO< ¢ = pandy” = 0,i.e.,0< ¢(t) = ar + bwitha, b > 0anda® + b2 £ 0

. Hence, from Eq(Eézlg—i ), (0, +00) x4r1 R x4r2 R x4rs R is Ricci flat space—time.

Corollary 4.8. Let us assume the hypothesi<airollary 4.6and that for all | (F;, gF;) is
Ricci flat. ThenM is Einstein if and only ify”” = 0 with

0<y = (p(U—PiC)/(ﬂ—Pi) forall i.
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Proof. Itis an immediate consequence@brollary 4.6

Corollary 4.9. Assume thafF;, gr,) is Ricci flat for all i. Let also: ne R\ {0} such that
¢ = nandy(t) = at + bwitha, b > 0anda? +b2 >0.fc=¢,np=7,c— p; # 0and

n— pi¢ # 0foralli,thenM = (0, 00) xyr1 F1 X --- X Fy is a Ricci flat space-time
wherep = /¢

Proof. Itis sufficient to applyCorollary 4.8andProposition 4.3

Remark 4.10. Note thaiCorollary 4.9contains the classical Kasner metrics except the case
in which at least ong; = 1 (really at most one could be 1 becayse p + p3 + p3 =1

).

The following just follows fromCorollary 2.7and again we discuss the existence of a
solution for the differential equation below.

Proposition 4.11. LetM =1 x ,, F1 x --- x o, F,, be a generalized Kasner space—time
with the metricg = —d® @ ¢?P1gr, @ --- @ 9?Pngr, . Then the space-tim@, g) has
constant scalar curvatureif and only if

(1) each fiber(F,, gr;) has constant scalar curvatun&i foranyi € {1,...,m}, and
() T =22 +[(¢ - e+ lGE + X, S

Remark 4.12. If ¢ # 0, then (2) inProposition 4.11s equivalent to

Az (p&@yr g
2+ @P+n)/() L~ p2pi”

Proof of Proposition 4.11 and Remark 4.12. For each € {1,...,m}, lety; = p; S’“
andy; = ¢¥ , then by(sc,rw-iii ) andEq. (2.2)there results

R AV PN ) S A IR o S/
T—ZsiJer' =D+ +;¢(4/(si+l))y,-

=1
m m 2
2yi 2y (¢)
D D s 5
T si+1lsp+1 ¢
Then we have

m 2 17 m
si+1 @) o TF,
e=>2smi| —1) e
i=1 2 ¢ ¢ i1 ¢
+ Z Z SkSszPk

i=1 k=1k#i
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PR S VAT SRR (go)z
= C; +Zsipi pi—— — 1)+ Z SkPk + Z <p21’:
i=1 k=1,k+#i i=1

2
—2§7+251Pl[(§ 2)+ pil (Z) +Z(p2p,
i=1

m

2
—%—+W EHMW) X:M

Since¢—2)¢+n+1=(—1P%+n=0ifandonlyifp; =0foralli e {1,...,m}, if
at least ongy; # 0 there results big. (2.2)
// 1 ((p({—l)2+n)// m TR,

T= (24‘ 1)7 (é_ 1)2 + n ('0({ 1)2_,’_" ~ (pZPi .

Hence, if¢ # 0, applyingLemma 2.8

m

4c2 (0@ T
q)zl’i ’

= —
2t @ L

Corollary 4.13. Under the hypothesis éfroposition 4.1-and¢ # 0 . Then by changing
we conclude that the space—time M has constant scalar

variables asu = ¢ +m/(2)
curvaturer if and only if

. 4{2 i” - TF,
24w = u%/ (@2 +n)pi

or equivalently

4 m
17 u' = —tu+ Z rpiu1—4/(1+ﬂ/§2)(17i/§)'

2 i=1
Remark 4.14. If ¢ £ 0 and there is only one fiber, i.e., in a standard warped product, the
equation in the previous corollary corresponds to those obtain@d ja6]

Example 4.15. Let us assume thgt=# 0 and eacl¥; is scalar flat, namelyr, = 0. Hence
equation in the previous corollary is written as

42,

— u = —TU.
24+
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Thus all the solutions have the form

247 | 2+
/-t 22 t —iy /-t 22 1
Ae & 4 Be & ifr<o,
u(r) =< Atr+ B8 if =0,
§2+nt §2+nt
T2 o2
Ae 2 + Be 2¢ if t>0

with constants4 and B such that: > O .
If ¢ =0, byProposition 4.11we look for positive solutions of the equation
2

1_:”(903 , @>0.
@

Sincen > 0, the latter is equivalent to
NICR
v Vi

Solutions of the equation above are given as:
olr) = C eIV,
whereC is a positive constant.

Note that this example include the situation of the classical Kasner space—times in the
framework of scalar curvature. Compare with the results about Einstein classical Kasner
metrics inRemark 4.;andExample 4.7

5. Four-dimensional space-time models

We first give a classification of four-dimensional warped product space—time models and
then consider Ricci tensors and scalar curvatures of them.

Definition 5.1. Let M =1 x », F1 x --- x p, F,, be a multiply generalized Robertson-
Walker space—time with metrig= —dr?> @ bigr, @ - -- ® b2 gF,, -

e (M, g) is said to be of Type () ilr = 1 and dim{) = 3.

e (M, g) is said to be of Type (ll) ifn = 2 and dim{1) = 1 and dim{>) = 2.

e (M, g)issaidto be of Type (lll),ifn = 3and dim{y) = 1,dim(F2) = Land dim§3) =
1.
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Note that Type (I) contains the Robertson—Walker space—time. The Schwarzschild black
hole solution can be considered as an example of Type (). Type (lll) includes the Kasner
space-time.

5.1. Type (l)

LetM = I x, F be aType (I) warped product space—time with mefrie —dr? @ bgr
. Then the scalar curvatuteof (M, g) is given as

b’ (b/)z
b2+e(b +& )

The problem of constant scalar curvatures of this type of warped products, known as general-
ized Robertson—Walker space—times is studigd®h, indeed, explicit solutions to warping
function are obtained to have a constant scalar curvature.

If vis a vector field orF andx = az + v, then

//

Ric(x, X) = Ricg (v, v) + (b0 + 2(")))gr (v, v) —

In [2], explicit solutions are also obtained for the warping function to make the space—
time as Einstein when the fiber is also Einstein.

5.2. Type (Il)

Let M =1 x », F1 x p,F> be a Type (lI) warped product space—time with mefrie
—d? & blgp1 @ b%gpz . Then the scalar curvatueeof (M, g) is given as

BB <b) b
T=—242144242 +4 .
b% b1 by b> b1bo

Note thatrp, = 0, since dimf) = 1.
If v; is a vector field onF; , for anyi € {1, 2} andx = % + v1 + v2, then

by by b1b) b,
Ric(x, x) = Ricp,(v2, v2) — —= — b— + <b /42t ) gr (v1, v1)
b1 b2

! 1/

bobob
+ (b4 032+ P22 ) aroa, )

Note that Rig; = 0, since dimfy) = 1.
e Classification of Einstein Type (1) generalized Kasner space—times

LetM = I x,r F1 x,r2 F2 be an Einstein Type (Il) generalized Kasner space-time.
Then the parameters introduced beféi®position 4.3are given bys = p1 + 2p>
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n = ps + 2p3 . Hence the latter arises

N2 /"
(n—0%f +¢% =1,

2 U
p1 [(C - DY+ %] =4, (E-K-Il)
A N2 1
2t pe|C- DY+ 2] =2

The last equation implies in particular thigt, is constant.
Let the system

(@) =vg?, 0<uo, (¥ v)
wherev ando are real parameters. All its solutiop$ have the form

AV 4 Be Vv iy < 0,
()= At+ B if v=0,
AeVV £ BeV"  if >0

with constants4 and B8 such thatp > 0 .
Furthermore, let they; v) modified system

((pa)// — v(pO"
@)% = v(¢”)?, (¢%;v; %)
¢ > 0.

Note thatv must be> 0 . It is easy to verify that all its solutions are given by

97 () = AEVY,
whereA is a positive constant.
Consider now two cases, namely
¢ = 0:first of all, note thap, = —3p1 andy = 3p2.
n = 0:thus,p; =0, for alli and O= 1 = Af, . Thus the corresponding metric
is
_dtz + gFl + ng-
n#0:thenpy #0, p2 # 0and

2
nef =1,
N2 Z
1 [_(zg + %] =, (E-K-1li)
AF. 1 ( /)2 1 _
S S ] =0

If
Ar, = 0:theni = 0 andy is constaniyg . Thus the corresponding metric is

2 2
—dr® + o5 gr, + 05 28,
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Ar, # 0 then Af}fl = 31, as consequengeis constant and considering

the system this gives a contradiction.
¢ # 0: hencen # 0 and byRemark 4.4he system reduces to
2 ((pé(n/r ))// _
g T
pL@) _ =2, (E-K-lii')
¢o¢t

Ay P2 @) _
2])2 + (p{ =2

n=¢2:s0p1 # 0and eithepy =0 or p, = —2p; . If
A =0:thenip, = 0. Thus, the corresponding metric is
—d® + ¢*Plgp, + 028,
whereg satisfies ¢¢; 0) .
A #0:then¢ = p; and pp = 0 . Hence, by the third equatioty, = A .
Thus, the corresponding metric is
—d? + % ¢r, + gpy.
whereg satisfies ¢%; 1) .

2. Ay
n # ¢° :thenpy # 0 and 2L 2 _(pz )A So, if

P2 p2P2

A =0 : then the first equation implies® = (Ar + B)*’/7 and ¢*)" =
2 (e 252 42
(5 -1) (B2,
Lr, = 0: then applying the third equation resulfs= 0, so¢® is con-
stant andp is a positive constantg . Thus the corresponding metric
is

~di? + 9 gy + 05 g ry-
Ar, # 0:thenpy = 0, hencepz = 2 §2 = 5. S0, by the third equation
AR, = —A? < 0.Thus the correspondlng metric is

—di? + gy + 0?2,
with ¢ as above.

)L;éO:thenpl;éO,hench <1—”—1)x.

©2r2 P2
r, =0:thenps = p» and the system can be reduced to
(@@ 1(ef)”
(p§(1/3) 3 €0§ -
which is equivalent to the solvable systepd;(34; ) . Note that. must
be> 0.
Ar, # 0:theng is constant and this gives a contradiction.

Table 1specifies the only possible Einstein generalized Kasner space—times of Type
(I) with the corresponding parameters. The last column indicates the functonthe
system which it satisfies.

Note thatCorollary 4.9cannot be applied in the situations above.

3
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e Classification of the Type (ll) generalized Kasner space—times with constant scalar
curvature
Let M = I x,m F1 x,r2 F> be aType (ll) generalized Kasner space-time with con-
stant scalar curvature. Then the parameters introduced befopmsition 4.1satisfy
¢ =p1+2p2,n=pi+2p5and
(0” ((p/)Z TF
r=24?+[(§—2)§+n] 2t goszz'
Note thatrz, must be constant if there exist a positive solutioifasic-K-1l.a ) (see also
Proposition 3.5 We consider two principal cases with different subcases.
¢=0:if
n=0:thenp; = p» =0, 7 = 75, and the corresponding metric is

—d? + gp + 85
n # 0:thenp, = —3p1 andy = 3 p? = 6p3 . The equatiotfcsc-K-1l.a )reduces

(csc-K-1l.a)

to
_ (¢/)2 TF,
T=7n 2 + e (csc-K-Il.b)
¢ #0:impliesn # 0 and considering & u = (¢¢)&+1/¢/2 | Corollary 4.13arises
the relation
4
— 1T u = —tu+ szulf4/(l+'7/cz)(”2/{). (csc-K-Il.c)
te

n=1¢?:thenpy # 0, eitherpy = 0 or pp = —2p1 , andu = ¢f .
T, = 0: so the equation reduces to

—2u” = —1u.
TFy #0: if
p2 = 0: the equation reduces to
—2u" = —(t — tp,)u.
pP2=—2p1:
—2u" = —tu + eru_l/s.
n;légz:thenpz;«réOandqi2 > 1.
T = 0:
4 14
— u' =—tu (5.1)
1+ %
¢
TFy #0:
4 1-4/(L+0/5)(p2/2)
17 U = —Tu A+ TR . (csc-K-Il.c)

;2
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3
(seeRemark 4.2and the latter equation reduces to the non-homogeneous

linear ordinary differential equation
=3 = —tu + 1P,

Note thataparticularsubcasegi,sz % .Infact, inthis casep; = p2 = 5

Synthetically, remembering that in each case the corresponding metric may be written
as—dr? + gozplgpl + <p21’2gp2 , we find that the only possibilities to have constant scalar
curvature in a generalized Kasner space—time of type (Il) are generated by where the condi-
tions fort must be imposed by the existence of positive solutions of the ordinary differential
equations of the last column, on the corresponding intdrval

5.3. Type (lll)

LetM = I x , F1 X p,F2 x pyF3be atype (Ill) warped product space—time with metric
g = —dr? @ b3gr, ® b3gr, ® b3gr, . Then the scalar curvatureof (M, g) is given as

(P Y bh bk ol b
b1 b2 bz biby  bobs  bibz)’

Note thatrr, = 0, since dimf;) = 1, for anyi € {1, 2, 3} .
If v; is a vector field onF; , for any i€ {1,2,3} and x = aﬁ +vi+uv2+ov3,
then
L bibib,,  bib,b
Rm@;azz(Mbg+ 1;-2+ 1513>gﬂ@Lv9
2 3

boblLb’ bobLb.
+ (bzbg+ L ) PR
1 3

bbby bsbjbl by by b
bab} =32 ,vg) — L — 2 :

Note that Rig; = 0, since dim§;) =1, foranyi € {1, 2, 3} .

e Classification of Einstein Type (Ill) generalized Kasner space—times
Let M = I xyn F1 xyr2 F2 x4r3 F3 be an Einstein Type (lll) generalized Kasner
space—time. Then the parameters introduced bdPooposition 4.3satisfy ¢ = p1 +
p2+ p3,n = p2+ p3+ p}. Hence the latter arises

(1= OYE +¢2 =2,
n[c-nYE+2] =i
P2 -1 + 2] =i
s[@—n‘? 5=

(E-K-IIl)
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Note that adding the last three equations, there results

"2 //
¢l — 1)(‘”) ; — 3. (5.2)

Consider now two cases, namely
¢ = 0: then applying5.2), we obtaim. = 0.
n = 0:thusp; = 0 for alli. Hence the corresponding metric is

—d? + gr, + g, + g5
n # 0: the system reduces to

19 =o,
(E-K-Ili)
pi [ (‘p)z + & } =0foralli=1,2,3
theng is constanty . Thus the corresponding metric is
2
—d? + v g r + 900 gr, + 900 *gFs.
¢ # 0: thusn # 0 and byRemark 4.4he system reduces to
£2 (@tw/EA)yr
nogte (E-K-Illi )
(o)
Pl 5 foralli=1,2,3
¢ ¢t
Adding the last three equations(&-K-Illii ) , we obtain that
eV
W) _ 3 (5.3)
@t

n = ¢2:then(5.2) and (5.3)give» = 0 . Thus, the corresponding metric is

—d® + 0y + 9728k, + 973k,
wherey satisfies ¢%; 0) .
n # ¢2: then at least twg;, 's are 0 . So if
A =0 : then the first equation implieg¢ = (Ar + B)*’/7 and ()" =
2
% (? — 1) (At + B)¥*/1242 _ Then by(5.3) results.A = 0 , s0¢* is
constant ang is a positive constanig . Thus the corresponding metric is
2 2 2
—d? + 0" g, + 05 28k, + 05 28 Fs-
A #0:thenallp;’s are;é 0 and all of them are equals, so that= p, =

ps=%.S0n= g yand} = % . Thus the system reduces to
1/3)\
@I 1) _
o3 T3 4t ’
which is equivalent to the solvable systead;(31; ) . Note thath must
be> 0.
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Table 3specifies the only possible Einstein generalized Kasner space—times of
type (Il) with the corresponding parameters. Like for the table of Type (ll), the
last column indicates the functignor the system which it satisfies.

This example may be easily generalized to the situation alFths are Ricci
flat, considerings = >~ ; s; > 1 instead of 3.

e Classification of Type (lll) generalized Kasner space-times with constant scalar
curvature
Let M = I xyr F1 xgr2 F2 xyr3 F3 be a Type (Ill) generalized Kasner manifold
with constant scalar curvature. Then the parameters introduced IRefguesition 4.11
satisfyc = p1+ p2 + p3,n = p? + p3 + p3. Thus, this case is already included in the
analysis ofExample 4.15

We will close this section by an example and the following comment which gives some
preliminary ideas about our future plans on this topic (see also the last section for details).

Example5.2. LetM = I x,r S3 x4r2 Sz be a generalized Kasner manifold with constant
scalar curvature. Then the parameters introduced béfasposition 4.1lare given by
{=3p1+2p2,n= 3p% + 2p§ . Consider nowp; = 1 andp, = —1 , then¢ =1 and
n =5 . Hence, applyin@orollary 4.13the latter conditions arise far = ¢° the problem

2.

U+ Tu= rg3u172/3

+ r§2u1+2/3, u >0, (5.4)

wherers,, 15, > 0 are the constant scalar curvatures of the corresponding spheres. Note
that the equation if6.4) has always the constant solution zero and there existsO such
that fort = 11 there is only one constant solution(&f4)and for anyr > t1 there are two
constant solutions db6.4), so that there exists a rangewd§, (t1, +00) , where the problem
(5.4) has multiplicity of solutions; while there is no constant solutions whenr; .

Onthe other hand, asiExample 5.2considerings instead ofS; with the same values of
prandpy,i.e,M = I X, Sg x,r2 Sz, results = 3p1 +3p2 =0, =3p? +3p2 =6
. Hence, applyindProposition 4.11he latter conditions arise the problem

—6(¢))? = —tp? + 15, + 15,0, 9> 0. (5.5)

The equation in(5.5) does not have the constant solution zero. Furthermore there is no
constant solution af6.5)if T < 2rg, , there is only one constant solution(sf5)if T = 2rg,
and two constant solutions @.5)if 7 > 2ts, .

The cases considered above are just some examples for the different types of differential
equations involved in the problem of constant scalar curvature when the dimensions, cur-
vatures and parameters have different values. In a future article, we deal with the problem
of constant scalar curvature of a pseudo-Riemannian generalized Kasner manifolds with
a base of dimension greater than or equal to 1. This problem carries to nonlinear partial
differential equations with concave—convex nonlinearities likgid), among others. Non-
linear elliptic problems with such nonlinearities have been extensively studied in bounded
domains ofR” , after the central article of Ambrosetti et Hl], in which the authors studied
the problem of multiplicity of solutions under Dirichlet conditions. The problem of constant
scalar curvature in a generalized Kasner manifolds with base of dimension greater than or
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equal to 1 is one of the first examples where those nonlinearities appear naturally. Another
related case is the base conformal warped products, studj2€]in

6. BTZ (2 + 1)-black hole solutions

1Now we consider BTZ (2- 1 )-black hole solutions and give another characterization
of (BTZ) black hole solutions mentioned Bection 2(for further details seg8,9,42,59)
in order to apply the results obtained in this paper.

All the cases considered id2], can be obtained applying tHermal approach that
follows. By considering the corresponding square lapse funatién the related three-
dimensional, (2+ 1) -space—time model can be expressed astalPmultiply generalized
Robertson—-Walker space—time, i.e.,

ds? = —dr? + b2(r) dx? + b3(r) dgp?, (6.1)
where
bi(t) = N(F 1),  ba(t) = F () (6.2)
with
ro1

and F~1 the inverse function of (assuming that there exists) ands an appropriate
constant that is most of the time related to the event horizon.
Recalling

d
1= L (Fo FH(0) = F(FO)F) (), (6.4)

we obtain the following properties by applying the chainrule. Here, note that all the functions
depend on the variableand the derivatives are taken with respect to the corresponding
arguments.

e b1 = N(b2).

e by=N(F 1Y) =b;.

e b, =N(b).

o by =0by = N'(b2)by, = N'(b2)b1 .

o b} = N"(b2)byb1 + N'(b2)by = N"(b2)b? + (N'(b2))?b1 .
Thus,

o U= N'(bby+ (N'(b2)2 = N"(b2)N(B2) + (N'(B2))?

= (N'N) (b2) = 5(N?)"(b2).

bl N(b 1 (N (b
® [Ti — N/(bz) [(722) — 2( gz( 2).

(6.5)

by, _ by
by by T by



F. Dobarro, B.Unal / Journal of Geometry and Physics 55 (2005) 75-106 101

On the other hand, b€orollary 2.7applied to the metri€6.1), with s1 = s, = 1. The
scalar curvature of the corresponding space—time is given by

b// b// b/ b/ b// b//
=2 241°2) =2 2-2
T <b1+b2+b1b2 b1+ b

N (bz)

(N?) (b2)
by '
(6.6)

2 <N"(b2)N(b2) (N (52) + 2N'(b2) ) — (V) (b2) + 2

Note that, the latter is an expression of the scalar curvature as an operator in the square
lapse function. Remember thigt = F~1 .

About the Riccitensor, applying oBroposition 3.2ndTheorem 3.2nd by considering
agains; = sp = 1, Theorem 3.3ays that the metri(6.1)is Einstein withx if and only if

b// b//
=2,

bl b

7/ / /
bi biby _, 6.7)
by b1by
N
by  baby

On the other hand by making use(6f5), the systent6.7)is equivalent to (all the functions
are evaluated in = by )

(NZ)N + (]Vrz)/ 21,
(NZ)// + (]\:’2)/ 21, (6.8)
Wy,

,
or moreover to the following

NZ /
(NZ)H—G— ( ) 2)"’
(6.9)
N2 1
(N _ N
r

Thus, we have

(N?)" = A. (6.10)
Hence:

N2(r) fr +c1r +c2 (6.11)

with ¢1 ande, suitable constants. But, sinc&9)'(r) = Ar + ¢1 , the second equation of
(6.9)is verified if and only ifc; = 0 . So, we have proved the following results.
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Proposition 6.1. Suppose that we havé2+ 1) -Lorentzian multiply warped product with
the metric given b{6.1), whereb; andb, satisfying both{6.2)and(6.3). The space-time is
Einstein with Ricci curvature if and only if the square lapse functiav¥ satisfieg6.11)
with ¢; = 0 and a suitable constanb .

Notice that the static (BTZ) and the static (dS) black hole solutions consideféd]in
satisfyProposition 6.1Thus they are Einstein multiply warped product space—times.

Remark 6.2. Remark that ifV? satisfieg6.11)with ¢; = 0, then an application d6.6)
gives the constancy of the scalar curvatute 31 , as desired. Note that this result agrees
with the ones obtained i2].

Furthermore, the following just follows from the solution of the involved second order
linear ordinary differential equation arisen by the expres§to8).

Proposition 6.3. Suppose that there is(@ + 1) -Lorentzian multiply warped product with
the metric given by6.1), whereb; and b, verifying (6.2) and (6.3). The space—time has
constant scalar curvature = A if and only if the square lapse functigv? has the form

1 A
N2(r) = —c1= + érz + ¢z, (6.12)
r
with suitable constants; andcs .

Note thatProposition 6.3agrees wittRemark 6.2

7. Conclusions

Now, we would like to summarize the content of the paper and to make some conclud-
ing remarks. In a brief, we studied expressions that relate the Ricci (respectively, scalar)
curvature of a multiply warped product with the Ricci (respectively, scalar) curvatures of
its base and fibers as well as warping functions.

By using expressions obtained in the paper, we proved necessary and sufficient conditions
for a multiply generalized Robertson—Walker space—time to be Einstein or to have constant
scalar curvature.

Furthermore, we introduced and considered a kind of generalization of Kasner space—
times, which is closely related to recent applications in cosmology where metrics of the
form

k
ds® = —d® + > e dx?  with i = (1) (7.1)
i=1
are frequently considered (588,69}, for other recenttopics concerned Kasner type metrics
see for instancf23,36,44,45,58,63,73, 74]If each warping function®' is expressed as

i = P with ¢; = /P (7.2)
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for suitablep; ’s, then(7.1) takes the form
k
ds? = —dr? + 7" di?. (7.3)
i=1

Our generalization of Kasner space—times corresponds exactly to the case in whichk the

are independent of More explicitly,o; = p; in Eq. (7.2) with « = «(z) for a sufficiently
regular fixed function. Note that a classical Kasner space—time corresponds to the case of
a = 1 (se€]55] also).

By applyingLemma 2.8 we obtained useful expressions for the Ricci tensor and the
scalar curvature of generalized Robertson—-Walker and generalized Kasner space—times.
These expressions allowed us to classify possible Einstein (respectively, with constant scalar
curvature) generalized Kasner space—times of dimension 4. We also obtained some patrtial
results for greater dimensions.

Finally, in order to study curvature properties of multiply warped product space—times
associated to the BTZ (2 1) -dimensional black hole solutions, we made applications
of the previously obtained curvature formulas. As a consequence, we characterized the
Einstein BTZ (respectively, with constant scalar curvature), in terms of the square lapse
function.

In forthcoming papers we plan to focus on a specific generalization of the structures
studied here, which s particularly useful in different fields such as relativity, extra-dimension
theories (Kaluza-Klein, Randall-Sundrum), string and super-gravity theories, spectrum of
Laplace—Beltrami operators paforms, among others. Roughly speaking, we will consider
a mixed structure between a multiply warped product and a conformal change in the base.
Naturally, our main interest is the study of curvature properties. As we have made progress
on this subject, we realized that these curvature related properties are interesting and worth
to study not only for the physical point of view (see for instance, the several recent works
of Gauntlett, Maldacena, Argurio, Schmidt, among many others), but also for exclusive
nonlinear partial differential equations involved. Indeed, the curvature related questions arise
problems of existence, uniqueness, bifurcation, study of critical points, et&Xae®le 5.2
above and the different works of Aubin, Hebey, Yau, Ambrosetti, Choquet-Bruat among
others).

Acknowledgements
We would like to thank the referee for his valuable comments and suggestions. Research

of F.D. partially supported by funds of the National Group ‘Analisi Reale’ of the Italian
Ministry of University and Scientific Research at the University of Trieste.

References

[1] A. Ambrosetti, N. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic
problems, J. Funct. Anal. 122 (1994) 519-543.



104 F. Dobarro, B.Unal / Journal of Geometry and Physics 55 (2005) 75-106

[2] L.J.Alias, A. Romero, M. 8nchez, Spacelike hypersurfaces of constant mean curvature and Calabi—Bernstein
type problems, Tobku Math. J. 49 (1997) 337-345.
[3] D.E. Allison, Energy conditions in standard static space-times, Gen. Relativity Gravitation 20 (2) (1988)
115-122.
[4] D.E. Allison, Geodesic completeness in static spacetimes, Geom. Dedicata 26 (1988) 85-97.
[5] D.E. Allison, B. Unal, Geodesic structure of standard static space—times, J. Geom. Phys. 46 (2) (2003)
193-200.
[6] T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, New York, 1998.
[7] M. Badiale, F. Dobarro, Some existence results for sublinear elliptic problem®¥ inFunkcial. Ekvac. 39
(2) (1996) 183-202.
[8] M. Bafiados, C. Henneaux, C. Teitelboim, J. Zanelli, Geometry-pf2black hole, Phys. Rev. D 48 (1993)
1506-1525.
[9] M. Bafados, C. Teitelboim, J. Zanelli, The black hole in three-dimensional spacetime, Phys. Rev. Lett. 69
(1992) 1849-1851.
[10] J.K. Beem, Lorentzian Geometry in the Large, Mathematics of Gravitation, Part |, Lorentzian Geometry and
Einstein Equations, vol. 41, Banach Center Publications, 1997, pp. 11-20.
[11] J.K. Beem, Stability of geodesic structures, Proceedings of the Second World Congress of Nonlinear Analysts,
Part 1 (Athens 1996) Nonlinear Anal., vol. 30, 1997, pp. 567-570.
[12] J.K. Beem, P. Ehrlich, Global Lorentzian Geometry, 1st ed., Markel-Deccer, New York, 1981.
[13] J.K. Beem, P. Ehrlich, K. Easley, Global Lorentzian Geometry, 2nd ed., Markel-Deccer, New York, 1996.
[14] J.K. Beem, P. Ehrlich, T.G. Powell, in: T.M. Rassias, G.M. Rassias (Eds.), Warped Product Manifolds in
Relativity in Selected Studies: A Volume Dedicated to the Memory of Albert Einstein, North-Holland,
Armsterdarm, 1982, pp. 41-56.
[15] J.K. Beem, P. Parker, Pseudoconvexity and geodesic connectedness, Ann. Mat. Pura Appl. 155 (1989) 137—
142.
[16] A.L. Besse, Einstein Manifolds, Springer-Verlag, Germany, 1987.
[17] R.L. Bishop, B. O’'Neill, Manifolds of negative curvature, Trans. Am. Math. Soc. 145 (1969) 1-49.
[18] J. Chabrowski, J.M. Bezzera @, On semilinear elliptic equations involving concave and convex nonlin-
earities, Math. Nachr. 233/234 (2002) 55-76.
[19] J. Choi, Multiply warped products with nonsmooth metrics, J. Math. Phys. 41 (2000) 8163-8169.
[20] J. Choi, S.-T. Hong, Warped product approach to universe with nonsmooth scale factor, J. Math. Phys. 45
(2004) 642-651.
[21] B.Y. Chen, F. Dillen, L. Verstraelen, L. Vranken, Lagrangian isometric immersions of a real-space-form
M"(c) into a complex-space-fori" (4c) , Math. Proc. Camb. Philos. Soc. 124 (1998) 107-125.
[22] V. Coti Zelati, F. Dobarro, R. Musina, Prescribing scalar curvature in warped products, Ricerche Mat. 46 (1)
(1997) 61-76.
[23] M.P. Dgbrowski, Kasner Asymptotics of Mixmaster Fava-Witten Cosmology. arXiv:hep-th/9911217.
[24] F. Dobarro, E. Lami Dozo, Scalar curvatures and warped products of Riemannian geometry, Trans. Am.
Math. Soc. 303 (1987) 161-168.
[25] F. Dobarro, B.Unal, Special standard static space times, Nonlin. Anal. TMA 59 (5) (2004) 759-770
[arXiv:math.FA/0406054].
[26] F. Dobarro, BUnal, Curvature in special base conformal warped products (2004) [arXiv:math.DG/0412436].
[27] K.L. Duggal, Constant scalar curvature and warped product globally null manifolds, J. Geom. Phys. 43 (2002)
327-340.
[28] K.L. Easley, Local existence of warped product metrics, Ph.D. Thesis, University of Missouri-Columbia,
1991.
[29] P.E. Ehrlich, Y.-T. Jung, S.-B. Kim, Constant scalar curvatures on warped product manifolds, Tsukuba J.
Math. 20 (1) (1996) 239-256.
[30] P.E. Ehrlich, Y.-T. Jung, S.-B. Kim, C.-G. Shin, Partial differential equations and scalar curvature of warped
product manifolds, Nonlin. Anal. 44 (4) (2001) 545-553.
[31] P. Ehrlich, M. &nchez, Some semi-Riemannian volume comparison theoren@ddMath. J. 52 (2000)
285-314.



F. Dobarro, B.Unal / Journal of Geometry and Physics 55 (2005) 75-106 105

[32] M. Ferrandez-lbpez, E. Gara-Rio, D.N. Kupeli, B.Unal, A curvature condition for a doubly twisted product
to be a warped product, Manuscripta Math. 106 (2) (2001) 213-217.

[33] J. Flores, M. @inchez, Geodesic connectedness and conjugate points in GRW space-times, J. Geom. Phys.
36 (3/4) (2000) 285-314.

[34] J. Flores, M. &nchez, Geodesic connectedness of multiwarped space—times, J. Diff. Egs. 186 (1) (2002)
1-30.

[35] G.B. Folland, Real Analysis, Modern Techniques and Their Applications, 2nd ed., Wiley, U.S.A, 1999.

[36] A.V. Frolov, Kasner-AdS spacetime and anisotropic brane-world cosmology. arXiv:gr-qc/0102064.

[37] G. Ganchey, V. Mihoa, Riemannian submanifolds of quasi-constant sectional curvatures, J. Reine Angew.
Math. 522 (2000) 119-141.

[38] A. Gebarowski, On Einstein warped products, Tensor (N. S.) 52 (3) (1993) 204—207.

[39] P. Halpern, The Behavior of Kasner Cosmologies with Induced Matter. arXiv:gr-qc/0010090.

[40] A. Harvey, Geodesics in Kasner universes, Phys. Rev. D 39 (1989) 673-676.

[41] S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space—Time, Cambridge University Press, UK,
1973.

[42] S.-T. Hong, J. Choi, Y.-J. Park, (21 ) BTZ black hole and multiply warped product spacetimes, Gen.
Relativity Gravitation 35 (2003) 2105-2116.

[43] M. Ito, Warped geometry in higher dimensions with an orbitfold extra dimension. arXiv:hep-th/0105186.

[44] V.D. Ivashchuk, D. Singleton, Composite electric S-brane solutions with maximal number of branes.
arXiv:hep-th/0407224.

[45] L. Jarv, T. Mohaupt, F. Saueressig, M-theory cosmologies from Sigular Calabi—Yau compactifications.
arXiv:hep-th/0310174.

[46] E. Kasner, Geometrical theorems in Einstein’s cosmological equations, Am. J. Math. 43 (1921) 217.

[47] M.O. Katanaev, T. Kbsch, W. Kummer, Global properties of warped solutions in general relativity, Ann.
Phys. 276 (2) (1999) 191-222.

[48] J.L. Kazdan, Prescribing the curvature of a Riemannian manifold, in: American Mathematical Society CBMS
Regional Conference Series in Mathematics, vol. 57, Providence, RI, 1985.

[49] D.-S. Kim, Einstein warped product spaces, Honam Math. J. 22 (1) (2000) 107-111.

[50] D.-S. Kim, Y.H. Kim, Compact Einstein warped product spaces with nonpositive scalar curvature, Proc. Am.
Math. Soc. 131 (8) (2003) 2573-2576.

[51] J.-S. Kim, H.-S. Chung, On Einstein warped products with compact Riemannian base, Honam Math. J. 20
(1) (1998) 153-159.

[52] O. Kobayashi, M. Obata, Certain mathematical problems on static models in general relativity, in: S.S. Chern,
W. Wen-tdin (Eds.), Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential
Equations, vol. 3, 1980, pp. 1333-1344.

[53] O. Kobayashi, M. Obata, Conformally-flatness and static space—time, Manifolds and Lie Groups (Notre
Dame, Ind., 1980), Progr. Math., vol. 14, Bidhser, Boston, MA, 1981, pp. 197—206.

[54] N. Koike, The decomposition of curvature netted hypersurface, Geom. Dedicata 54 (1995) 1-11.

[55] S.S. Kokarev, Multidimensional generalization of Kasner solution. arXiv:gr-gc/9510059.

[56] D. Kramer, H. Stephani, E. Herlt, M. MacCallum, Exact Solutions of Einstein’s Field Equations, Cambridge
University Press, UK, 1980.

[57] M. Lohnherr, H. Reckziegel, On ruled real hypersurfaces in complex space forms, Geom. Dedicata 74 (1999)
267-286.

[58] M. Maceda, On the Wheeler-DeWitt equation for Kasner-like cosmologies. arXiv:hep-th/0408239.

[59] C. Mafinez, C. Teitelboim, J. Zanelli, Charged rotating balck hole in three spacetime dimensions, Phys. Rev.
D 61 (2000) 1-8.

[60] M. Mikkelsen, Some results on standard static space—times with perfect fluid, Diff. Geom. Appl. 1 (1992)
211-220.

[61] C.W. Misner, J.A. Wheeler, K.S. Thorne, Gravitation, W.H. Freeman, San Francisco, 1973.

[62] B. O'Neill, Semi-Riemannian Geometry, Academic Press, NY, 1983.

[63] G. Papadopoulos, Power-law singularities in string theory and M-theory. arXiv:hep-th/0404172.

[64] T.G. Powell, Lorentzian manifolds with non-smooth metrics and warped products, Ph.D. Thesis, University
of Missouri-Columbia, 1982.



106 F. Dobarro, B.Unal / Journal of Geometry and Physics 55 (2005) 75-106

[65] A. Romero, M. &inchez, On the completeness of certain families of semi-Riemannian manifolds, Geom.
Dedicata 53 (1994) 103-117.

[66] M. Sanchez, Geodesic connectedness of in generalized Reissner—Blortigte Lorentz manifolds, Gen.
Relativity Gravitation 29 (1997) 1023-1037.

[67] M. Sanchez, On the geometry of generalized Robertson—Walker spacetimes: geodesics, Gen. Relativity
Gravitation 30 (1998) 915-932.

[68] M. Sanchez, On the Geometry of Generalized Robertson—Walker spacetimes: curvature and Killing fields, J.
Geom. Phys. 31 (1999) 1-15.

[69] J. Socorro, V.M. Villanueva, L.O. Pimentel, Classical solutions in five-dimensional induced matter theory
and its relations with an imperfect fluid, Int. J. Mod. Phys. A 11 (1996) 5495 arXiv:gr-qc/9605012.

[70] B. Unal, Doubly warped products, Ph.D. Thesis, University of Missouri-Columbia, 2000.

[71] B. Unal, Doubly warped products, Differential Geom. Appl. 15 (3) (2001) 253-263.

[72] B. Unal, Multiply warped products, J. Geom. Phys. 34 (3/4) (2000) 287-301.

[73] R.J.Van Den Hoogen, A. Horne, Brane-world Cosmologies with non-local bulk effects. arXiv:gr-qc/0408014.

[74] Yu.S. Vladimirov, S.S. Kokarev, 4D homogeneous isotropic cosmological models generated by the 5D
vacuum. arXiv:gr-qc/0210067.

[75] X. Zhang, The positive mass theorem in general relativity, AMS (Am. Math. Soc.)/IP Stud. Adv. Math. 29
(2001) 227-233.



	Curvature of multiply warped products
	Introduction
	Preliminaries
	Special multiply warped products
	Einstein--Ricci tensor
	Constant scalar curvature

	Generalized Kasner space--time
	Four-dimensional space--time models
	Type (I)
	Type (II)
	Type (III)

	BTZ ($2+1)-black hole solutions
	Conclusions
	Acknowledgements
	References


