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Curvature of multiply warped products
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Abstract

In this paper, we study Ricci-flat and Einstein–Lorentzian multiply warped products. We also
consider the case of having constant scalar curvatures for this class of warped products. Finally, after
we introduce a new class of space–times called as generalized Kasner space–times, we apply our
results to this kind of space–times as well as other relativistic space–times, i.e., Reissner–Nordström,
Kasner space–times, Bañados–Teitelboim–Zanelli and de Sitter black hole solutions.
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1. Introduction

The concept of warped products was first introduced by Bishop and O’Neill (see[17]) to
construct examples of Riemannian manifolds with negative curvature. In Riemannian ge-
ometry, warped product manifolds and their generic forms have been used to construct new
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examples with interesting curvature properties since then (see[16,17,21,24,29,37,38,49–
51,54,57]). In Lorentzian geometry, it was first noticed that some well known solutions
to Einstein’s field equations can be expressed in terms of warped products in[12] and
after that Lorentzian warped products have been used to obtain more solutions to Ein-
stein’s field equations (see[12,13,16,17,41,56,62]). Moreover, geometric properties such
as geodesic structure or curvature of Lorentzian warped products have been studied by many
authors because of their relativistic applications (see[2–5,10,11,14,15,19,20,25,27,29–
31,33,34,42,47,52,53,60,64–68,71,72]).

We recall the definition of a warped product of two pseudo-Riemannian manifolds (B, gB)
and (F, gF ) with a smooth functionb : B → (0,∞) (see also[13,62]). Suppose that (B, gB)
and (F, gF ) are pseudo-Riemannian manifolds and also suppose thatb : B → (0,∞) is a
smooth function. Then the (singly) warped product,B× bF is the product manifoldB× F

equipped with the metric tensorg = gB ⊕ b2gF defined by

g = π∗(gB) ⊕ (b ◦ π)2σ∗(gF ),

whereπ : B× F → B andσ : B× F → F are the usual projection maps and∗ denotes
the pull-back operator on tensors. Here, (B, gF ) is called as the base manifold and (F, gF )
is called as the fiber manifold and alsob is called as the warping function.

Generalized Robertson–Walker space–time models (see[2,11,33,65,67,68]) and stan-
dard static space–time models (see[3–5,52,53]) that are two well known solutions to Ein-
stein’s field equations can be expressed as Lorentzian warped products. Clearly, the former
is a natural generalization of Robertson–Walker space–time and the latter is a generalization
of Einstein static universe. One way to generalize warped products is to consider the case of
multi fibers to obtain more general space–time models (see examples given inSection 2) and
in this case the corresponding product is so called multiply warped product. In[72], covari-
ant derivative formulas for multiply warped products are given and the geodesic equation for
these spaces are also considered. The causal structure, Cauchy surfaces and global hyper-
bolicity of multiply Lorentzian warped products are also studied. Moreover, necessary and
sufficient conditions are obtained for null, time-like and space-like geodesic completeness
of Lorentzian multiply products and also geodesic completeness of Riemannian multiply
warped products. In[19,20], the author studies manifolds withC0 -metrics and properties
of Lorentzian multiply warped products and then he shows a representation of the interior
Schwarzschild space–time as a multiply warped product space–time with certain warping
functions. He also gives the Ricci curvature in terms ofb1, b2 for a multiply warped prod-
uct of the formM = (0,2m) ×b1 R

1 ×b2 S
2 . In [42], physical properties (2+ 1) charged

Bañados–Teitelboim–Zanelli (BTZ) black holes and (2+ 1) charged de Sitter (dS) black
holes are studied by expressing these metrics as multiply warped product space–times, more
explicitly, Ricci and Einstein tensors are obtained inside the event horizons (see also[9]).
In [66], the existence, multiplicity and causal character of geodesics joining two points of
a wide class of non-static Lorentz manifolds such as intermediate Reissner–Nordström or
inner Schwarzschild and generalized Robertson–Walker space–times are studied. In[34],
geodesic connectedness and also causal geodesic connectedness of multi-warped space–
times are studied by using the method of Brouwer’s topological degree for the solution of
functional equations. There are also different types of warped products such as a kind of
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warped product with two warping functions acting symmetrically on the fiber and base man-
ifolds, called as a doubly warped product (see[71]) or another kind of warped product called
as a twisted product when the warping function defined on the product of the base and fiber
manifolds (see[32]). Moreover, Easley studiedlocal existence warped product structures
and also defined and considered another form of a warped product in his thesis (see[28]).

In this paper, we answer some questions about the existence of nontrivial warping func-
tions for which the multiply warped product is Einstein or has a constant scalar curvature.
This problem was considered especially for Einstein Riemannian warped products with
compact base and some partial answers were also provided (see[38,49–51]). In [50], it is
proved that an Einstein Riemannian warped product with a non-positive scalar curvature and
compact base is just a trivial Riemannian product. Constant scalar curvature of warped prod-
ucts was studied in[22,24,29,30]when the base is compact and of generalized Robertson–
Walker space–times in[29]. Furthermore, partial results for warped products with non-
compact base were obtained in[7,18]. The physical motivation of existence of a positive
scalar curvature comes from the positive mass problem. More explicitly, in general relativity
the positive mass problem is closely related to the existence of a positive scalar curvature (see
[75]). As a more general related reference, one can consider[48] to see a survey on scalar
curvature of Riemannian manifolds. The problem of existence of a warping function which
makes the warped product Einstein was already studied for special cases such as generalized
Robertson–Walker space–times and a table given the different cases of Einstein generalized
Robertson–Walker when the Ricci tensor of the fiber is Einstein in[2] (see also references
therein). Einstein–Ricci tensor and constant scalar curvature of standard static space–times
with perfect fluid were already considered in[52,60]. Moreover, in[53], the conformal ten-
sor on standard static space–times with perfect fluid is studied and it is shown that a standard
static space–time with perfect fluid is conformally flat if and only if its fiber is Einstein and
hence of constant curvature. In[25], this problem is considered for arbitrary standard static
space–times, more explicitly, an essential investigation of conditions for the fiber and warp-
ing function for a standard static space–time (not necessarily with perfect fluid) is carried
out so that there exists no nontrivial function on the fiber guaranteeing that the standard
static space–time is Einstein. Duggal studied the scalar curvature of four-dimensional triple
Lorentzian products of the formL× B× fF and obtained explicit solutions for the warping
function f to have a constant scalar curvature for this class of products (see[27]). More-
over, in the present paper, we introduce an original form to generalize Kasner space–times
and then we obtain necessary and sufficient conditions as well as explicit solutions, for
some special cases, for a generalized Kasner space–time to be Einstein or to have constant
scalar curvature. Besides than the form mentioned here, there are also other generalizations
in the literature (see[43,55]). In [43], an extension for Kasner space–times is introduced
in the view of generalizing five-dimensional Randall–Sundrum model to higher dimen-
sions and in[55], another multi-dimensional generalization of Kasner metric is described
and essential solutions are also obtained for this class of extension. One can also consider
[23,36,44,45,58,63,73]for recent applications of Kasner metrics and its generalizations.

We organize the paper as follows. InSection 2, we give several basic geometric facts
related to the concept of curvatures (see[70,72]). Moreover, we recall two well known exam-
ples of relativistic space–times which can be considered as generalized multiply Robertson–
Walker space–times. InSection 3, we obtain two results in which, under several assumptions
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Table 1

ζ η
η

ζ2 λ λF2 p1 p2 Metric ϕ

0 0 – 0 0 0 0 −dt2 + gF1 + gF2 –

0 3
2p

2
1 
= 0 – 0 0 
= 0 − 1

2p1 −dt2 + ϕ
2p1
0 gF1 + ϕ

−p1
0 gF2 ϕ0 = cte > 0

0 3
2p

2
1 
= 0 – − 
= 0 
= 0 − 1

2p1 No metric –


= 0 ζ2 1 0 0 
= 0 0,−2p1 −dt2 + ϕ2p1gF1 + ϕ2p2gF2 (ϕζ ; 0)

= 0 ζ2 1 
= 0 λ 
= 0 0 −dt2 + ϕ2p1gF1 + gF2 (ϕζ ; λ)


= 0 
= 0 
= 1 0 0 p1 
= 0 −dt2 + ϕ
2p1
0 gF1 + ϕ

2p2
0 gF2 ϕ0 = cte > 0


= 0 
= 0 
= 1 0 < 0 0 
= 0 −dt2 + gF1 + ϕ2p2gF2 (ϕη/ζ ; 0)

= 0 
= 0 
= 1 > 0 0 p2 
= 0 −dt2 + ϕ2p1gF1 + ϕ2p1gF2 (ϕζ ; 3λ; ∗)

= 0 
= 0 
= 1 
= 0 
= 0 p1 
= 0 No metric –

Table 2

ζ η
η

ζ2 τF2 p1 p2 ϕ eq.

0 0 – τF2 0 0 τ = τF2

0 3
2p

2
1 – 0 
= 0 − 1

2p1 τ = η
(ϕ′)2
ϕ2

0 3
2p

2
1 – 
= 0 
= 0 − 1

2p1 τ = η
(ϕ′)2
ϕ2 + τF2

ϕ2p2

ζ 
= 0 ζ2 1 0 
= 0 0 −2u′′ = −τu; u = ϕζ

ζ 
= 0 ζ2 1 0 
= 0 −2p1 −2u′′ = −τu; u = ϕζ

ζ 
= 0 ζ2 1 
= 0 
= 0 0 −2u′′ = −(τ − τF2); u = ϕζ

ζ 
= 0 ζ2 1 
= 0 
= 0 −2p1 −2u′′ = −τu+ τF2u
−1/3; u = ϕζ

ζ 
= 0 η 
= 0 
= 1 0 p1 
= 0 (5.1); u = (ϕζ)(1+η/ζ2)/2

ζ 
= 0 η 
= 0 
= 1, 1
3 
= 0 p1 
= 0 (csc-K-II.c ); u = (ϕζ)(1+η/ζ2)/2

ζ 
= 0 ζ2

3
1
3 
= 0 ζ

3
ζ
3 −3u′′ = −τu+ τF2; u = ϕ(2/3)ζ

on the fibers and warping functions, multiply generalized Robertson–Walker space–times
are Einstein or have constant scalar curvature. InSection 4, after we introduce generalized
Kasner space–times, we state conditions for this class of space–times to be Einstein or
to have constant scalar curvature. InSection 5, we give an explicit classification of four-
dimensional multiply generalized Robertson–Walker space–times and four-dimensional
generalized Kasner space–times which are Einstein. In the last section, we focus on BTZ
(2 + 1) -black hole solutions and classify (BTZ) black hole solutions given inSection 2
by using a more formal approach (see[8,9,42,59]) and then we also prove necessary and
sufficient conditions for the lapse function of a BTZ (2+ 1) black hole solution to have a
constant scalar curvature or to be Einstein. Our main results are obtained inSections 3–5,
especially seeTheorem 3.3, Propositions 4.3 and 4.11as well asTables 1–3.

Table 3

ζ η
η

ζ2 λ p1 p2 p3 Metric ϕ

0 0 – 0 0 0 0 −dt2 + gF1 + gF2 + gF3 –

0 
= 0 – 0 p1 p2 p3 −dt2 + ϕ
2p1
0 gF1 + ϕ

2p2
0 gF2 + ϕ

2p3
0 gF3 ϕ0 = cte > 0


= 0 ζ2 1 0 p1 p2 p3 −dt2 + ϕ2p1gF1 + ϕ2p2gF2 + ϕ2p3gF3 (ϕζ ; 0)


= 0 
= 0 
= 1 0 p1 p2 p3 −dt2 + ϕ
2p1
0 gF1 + ϕ

2p2
0 gF2 + ϕ

2p3
0 gF3 ϕ0 = cte > 0


= 0 
= 0 
= 1 > 0 p1 p1 p1 −dt2 + ϕ2p1gF1 + ϕ2p1gF2 + ϕ2p1gF3 (ϕζ ; 3λ; ∗)
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2. Preliminaries

Throughout this work any manifoldM is assumed to be connected, Hausdorff, paracom-
pact and smooth. Moreover,I denotes for an open interval inR of the formI = (t1, t2)
where−∞ ≤ t1 < t2 ≤ ∞ and we will furnishI with a negative metric−dt2 . A pseudo-
Riemannian manifold (M, g) is a smooth manifold with a metric tensorg and a Lorentzian
manifold (M,g) is apseudo-Riemannianmanifold with signature (−,+,+, . . . ,+) . More-
over, we use the definition and the sign convention for thecurvatureas in[13]. For an arbi-
traryn-dimensional pseudo-Riemannian manifold (M,g) and a smooth functionf : M → R

, we have that Hf and�(f ) denote theHessian(0, 2) tensor and the Laplace–Beltrami op-
erator off, respectively[62]. Here, we use the sign convention for the Laplacian in[62], i.e.,
defined by� = trg(H) (see p. 86 of[62]) where H is the Hessian form (see p. 86 of[62])
and trg denotes for the trace, or equivalently,� = div(grad) , where div is the divergence
and grad is the gradient (see p. 85 of[62]). Furthermore, we will frequently use the notation
‖gradf‖2 = g(gradf,gradf ) . When there is a possibility any misunderstanding, we will
explicitly state the manifold or the metric for which the operator is considered.

We begin our discussion by giving the formal definition of a multiply warped product
(see[72]).

Definition 2.1. Let (B, gB) and (Fi, gFi ) bepseudo-Riemannianmanifolds and also letbi :
B → (0,∞) be smooth functions for anyi ∈ {1,2, . . . , m} . Themultiply warped product
is theproduct manifoldM = B× F1 × F2 × · · · × Fm furnished with the metric tensor
g = gB ⊕ b2

1gF1 ⊕ b2
2gF2 ⊕ · · · ⊕ b2

mgFm defined by

g = π∗(gB) ⊕ (b1 ◦ π)2σ∗
1(gF1) ⊕ · · · ⊕ (bm ◦ π)2σ∗

m(gFm ). (2.1)

Each functionbi : B → (0,∞) is called awarping function and also each manifold
(Fi, gFi ) is called a fiber manifold for anyi ∈ {1,2, . . . , m} . The manifold (B, gB) is the
base manifold of the multiply warped product:

• If m = 1 , then we obtain asingly warped product.
• If all bi ≡ 1 , then we have a (trivial)product manifold.
• If (B, gB) and (Fi, gFi ) are allRiemannianmanifolds for anyi ∈ {1,2, . . . , m} , then (M,

g) is also aRiemannianmanifold.
• The multiply warped product (M, g) is aLorentzian multiply warped productif (Fi, gFi )

are allRiemannianfor any i ∈ {1,2, . . . , m} and either (B, gB) is Lorentzianor else
(B, gB) is a one-dimensional manifold with anegative definitemetric−dt2 .

• If B is an open connected intervalI of the formI = (t1, t2) equipped with the negative
definite metricgB = −dt2 , where−∞ ≤ t1 < t2 ≤ ∞ , and (Fi, gFi ) is Riemannian
for anyi ∈ {1,2, . . . , m} , then the Lorentzian multiply warped product (M, g) is called
a multiply generalized Robertson–Walker space–time or a multi-warped space–time. In
particular, a multiply generalized Robertson–Walker space–time is called a generalized
Reissner–Nordström space–time whenm = 2 .
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We will state the covariant derivative formulas formultiply warped products(see
[19,70,72]).

Proposition 2.2. Let M = B× b1F1 × · · · × bmFm be a pseudo-Riemannian multiply
warped product with metricg = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm also letX, Y ∈ L(B) and

V ∈ L(Fi) ,W ∈ L(Fj) . Then

(1) ∇XY = ∇B
XY .

(2) ∇XV = ∇VX = X(bi)
bi

V .

(3) ∇VW =
{

0 if i 
= j,

∇Fi
V W − g(V,W)

bi
gradBbi if i = j.

One can compute thegradientand theLaplace–Beltramioperator onM in terms of the
gradientand theLaplace–Beltramioperator onB andFi , respectively. From now on, we
assume that� = �M and grad= gradM to simplify the notation.

Proposition 2.3. Let M = B× b1F1 × · · · × bmFm be a pseudo-Riemannian multiply
warpedproductwithmetricg = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm andφ : B → Randψi : Fi →

R be smooth functions for anyi ∈ {1, . . . , m} . Then

(1) grad(φ ◦ π) = gradBφ .

(2) grad(ψi ◦ σi) = gradFiψi
b2
i

.

(3) �(φ ◦ π) = �Bφ +
m∑
i=1

si
gB(gradBφ,gradBbi)

bi
.

(4) �(ψi ◦ σi) = �Fiψi

b2
i

.

Now, we will stateRiemannian curvatureandRicci curvatureformulas from[70].

Proposition 2.4. Let M = B× b1F1 × · · · × bmFm be a pseudo-Riemannian multiply
warped product with metricg = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm also letX, Y,Z ∈ L(B) and

V ∈ L(Fi),W ∈ L(Fj) andU ∈ L(Fk) . Then

(1) R(X, Y )Z = RB(X, Y )Z .

(2) R(V,X)Y = −H
bi
B

(X,Y )
bi

V .
(3) R(X,V )W = R(V,W)X = R(V,X)W = 0 if i 
= j .
(4) R(X, Y )V = 0 .
(5) R(V,W)X = 0 if i = j .
(6) R(V,W)U = 0 if i = j andi, j 
= k .
(7) R(U,V )W = −g(V,W) gB(gradBbi,gradBbk)

bibk
U if i = j andi, j 
= k .

(8) R(X,V )W = g(V,W)
bi

∇B
X(gradBbi) if i = j .

(9) R(V,W)U = RFi (V,W)U + ‖gradBbi‖2
B

b2
i

(g(V,U)W − g(W,U)V ) if i, j = k .
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Proposition 2.5. Let M = B× b1F1 × · · · × bmFm be a pseudo-Riemannian multiply
warped product with metricg = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm , also letX, Y,Z ∈ L(B) and

V ∈ L(Fi) andW ∈ L(Fj) . Then

(1) Ric(X, Y ) = RicB(X, Y ) −
m∑
i=1

si

bi
Hbi
B (X, Y ) .

(2) Ric(X,V ) = 0 .
(3) Ric(V,W) = 0 if i 
= j .

(4) Ric(V,W) = RicFi (V,W) −

�Bbi

bi
+ (si − 1)

‖gradBbi‖2
B

b2
i

+
m∑

k=1,k 
=i
sk
gB(gradBbi,gradBbk)

bibk


 g(V,W) if i = j .

Now, we will compute thescalar curvatureof amultiply warped product. In order to do
that, one can use the followingorthonormal frameonM constructed as follows.

Let
{

∂
∂x1 , . . . ,

∂
∂xr

}
and

{
∂

∂y1
i

, . . . , ∂

∂y
si
i

}
be orthonormal frames on open setsU ⊆ B

andVi ⊆ Fi , respectively, for anyi ∈ {1, . . . , m} . Then

{
∂

∂x1 , . . . ,
∂

∂xr
,

∂

b1∂y
1
1

, . . . ,
∂

b1∂y
s1
1
, . . . ,

∂

bm∂y1
m

, . . . ,
∂

bm∂y
sm
m

}

is an orthonormal frame on an open setW ⊆ B× F contained inU × V ⊆ B× F , where
F = F1 × · · · × Fm .

Proposition 2.6. Let M = B× b1F1 × · · · × bmFm be a pseudo-Riemannian multiply
warped product with metricg = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm .Then, τ admits the following

expressions:

(1)

τ = τB − 2
m∑
i=1

si
�Bbi

bi
+

m∑
i=1

τFi

b2
i

−
m∑
i=1

si(si − 1)
‖gradBbi‖2

B

b2
i

−
m∑
i=1

m∑
k=1,k 
=i

sksi
gB(gradBbi,gradBbk)

bibk
,

(2)

τ = τB −
m∑
i=1

si
�Bbi

bi
− div

m∑
i=1

si
gradBbi
bi

− gB

(
m∑
i=1

si
gradBbi
bi

,

m∑
i=1

si
gradBbi
bi

)
+

m∑
i=1

τFi

b2
i

.
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The following formula can be directly obtained from the previous result and noting that
on a multiply generalized Robertson–Walker space–time gradBbi = −b′

i , ‖gradBbi‖2
B =

−(b′
i)

2 ,gB
(
∂
∂t
, ∂
∂t

) = −1 , HbiB
(
∂
∂t
, ∂
∂t

) = b′′
i and�Bbi = −b′′

i , we denote the usual deriva-
tive on the real intervalI by the prime notation (i.e.,′ ) from now on.

Corollary 2.7. LetM = I × b1F1 × · · · × bmFm be a multiply generalized Robertson–
Walker space–time with the metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm . Then, τ admits the

following expressions:

(1) τ = 2
m∑
i=1

si
b′′
i

bi
+

m∑
i=1

τFi

b2
i

+
m∑
i=1

si(si − 1)
(b′
i)

2

b2
i

+
m∑
i=1

m∑
k=1,k 
=i

sksi
b′
ib

′
k

bibk
,

(2) τ =
m∑
i=1

si
b′′
i

bi
+
(

m∑
i=1

si
b′
i

bi

)′
+
(

m∑
i=1

si
b′
i

bi

)2

+
m∑
i=1

τFi

b2
i

.

We now give some physical examples of relativistic space–times and state some of
their geometric properties to stress the physical motivation and importance of Lorentzian
multiply warped products. The first example is Schwarzschild black hole solution or known
as inner Reissner–Nordström space–time and the second one is Kasner space–time. Our
last two examples are closely related to each other, more explicitly, the third example is
Bañados–Teitelboim–Zanelli (BTZ) black hole solution and the final example is de Sitter
(dS) black hole solution.

• Schwarzschild space–time
We will briefly discuss the interior Schwarzschild solution. We show how the interior

solution can be written as a multiply warped product.
The line element of theSchwarzschild black holespace–time model for the region

r < 2m is given as (see[41])

ds2 = −
(

2m

r
− 1

)−1

dr2 +
(

2m

r
− 1

)
dt2 + r2 dΩ2,

where dΩ2 = dθ2 + sin2 θ dϕ2 onS2 .
In [19], it is shown that this space–time model can be expressed as a multiply gener-

alized Robertson–Walker space–time, i.e.,

ds2 = −dt2 + b2
1(t) dr2 + b2

2(t) dΩ2,

where b1(t) =
√

2m
F−1(t)

− 1 and b2(t) = F−1(t) , also t = F (r) =

2marccos

(√
2m−r

2m

)
− √

r(2m− r) such that limr→2m F (r) = mπ and

limr→0F (r) = 0 .
Moreover, we also need to impose the above multiply generalized Robertson–Walker

space–time model for theSchwarzschild black holeto be Ricci-flat due to the fact that the
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Schwarzschild black holeis Ricci-flat (see also the review of Miguel Sánchez in AMS
for [19]).

• Kasner space–time
We consider theKasnerspace–time as aLorentzianmultiply warped product (see

[61]).
A Lorentzian multiply warped product (M, g) of the formM = (0,∞) × tp1R×

tp2R× tp3R with the metricg = −dt2 ⊕ t2p1 dx2 ⊕ t2p2 dy2 ⊕ t2p3 dz2 is said to be the
Kasnerspace–time ifp1 + p2 + p3 = (p1)2 + (p2)2 + (p3)2 = 1 (see[46]).

It is known by[40] that−1
3 ≤ p1, p2, p3 < 1 . It is also known that, excluding the

case of twopi ’s zero, then onepi is negative and the other two are positive. Thus we may
assume that−1

3 ≤ p1 < 0 < p2 ≤ p3 < 1 by excluding the case of twopi ’s zero and
onepi equal to 1. Furthermore, the only solution in whichp2 = p3 is given byp1 = −1

3
andp2 = p3 = 2

3 . Note also that since−1
3 ≤ p1, p2, p3 < 1 , we have to assumeB to

be (0,∞) . Clearly, theKasnerspace–time isglobally hyperbolic(see[72]).
By making use of the results in[72], it can be easily seen that theKasnerspace–

time is future-directed time-like and future-directed null geodesic complete but it is
past-directed time-like and past-directed null geodesic incomplete. Moreover, it is also
space-like geodesic incomplete.

Notice that the Kasner space–time is Einstein withλ = 0 (i.e., Ricci-flat) (see[46]
and p. 135 of[56]) and hence has constant scalar curvature as zero. This fact can be
proved as a particular consequence of our results in the next section, namely by using
Theorem 3.3.

• Static Bañados–Teitelboim–Zanelli (BTZ) space–time
In [42], authors classify (BTZ) black hole solutions into three different classes as

static, rotating and charged. Here, we will only give a brief description of a static BTZ
space–time in terms of Lorentzian multiply warped products, i.e., multiply generalized
Robertson–Walker space–times (see also[8,9,59]). The line element of a static BTZ
black hole solution can be expressed as

ds2 = −N−2 dr2 +N2 dt2 + r2 dΩ2,

where dΩ2 = dθ2 + sin2 θ dϕ2 onS2 .
The line element of theStatic BTZ black holespace–time model for the regionr < rH

can be obtained by taking

N2 = m− r2

l2
.

In this case, the space–time model can be expressed as a multiply generalized Robertson–
Walker space–time, i.e.,

ds2 = −dt2 + b2
1(t) dr2 + b2

2(t) dΩ2,

where rH = l
√
m , b1(t) =

√
m− (F−1(t))2

l2
and b2(t) = F−1(t) , also t = F (r) =

larcsin
(

r
rH

)
such that limr→rH F (r) = lπ

2 and limr→0F (r) = 0 .
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Here, note that the constant scalar curvatureτ of the multiply generalized Robertson–
Walker space–time introduced above isτ = −6/l2 (see[42]) or applyCorollary 2.7.

Note that, in[42], they also classify (dS) black hole solution into three classes as
static, rotating and charged, similar to (BTZ) black hole solutions (see[8,9,59]).

We now state a couple of results which we will frequently be applied along this article.
The first one is an easy computation which we will show explicitly below. Let (M,

g) be ann-dimensional pseudo-Riemannian manifold. For anyt ∈ R andv ∈ C∞
>0(B) =

{v ∈ C∞(B) : v > 0} :

gradgv
t = tvt−1 gradgv, �gv

t = t[(t − 1)vt−2‖gradgv‖2
g + vt−1�gv],

�gv
t

vt
= t

[
(t − 1)

‖gradgv‖2
g

v2 + �gv

v

]
. (2.2)

The second one is a lemma that follows (for a proof and some extensions as well as
other useful applications, see Section 2 of[26]).

Lemma 2.8. Let (M, g) be an n-dimensional pseudo-Riemannian manifold. LetLg be a
differential operator onC∞

>0(M) defined by

Lgv =
k∑
i=1

ri
�gv

ai

vai
, (2.3)

whereri, ai ∈ R andζ :=∑k
i=1 riai , η :=∑k

i=1 ria
2
i . Then,

(i) Lgv = (η− ζ)
‖gradgv‖2

g

v2 + ζ
�gv

v
. (2.4)

(ii) If ζ 
= 0 andη 
= 0 , for α = ζ
η
andβ = ζ2

η
, then we have

Lgv = β
�gv

1/α

v1/α . (2.5)

3. Special multiply warped products

3.1. Einstein–Ricci tensor

In this section, we state some condition to guarantee that amultiply generalized
Robertson–Walker space–timeisRicci-flatorEinstein.

Now, we recall some elementary facts about Einstein manifolds starting from its defini-
tion.

Recall that ann-dimensional pseudo-Riemannian manifold (M, g) is said to be Einstein
if there exists a smooth real-valued functionλ onM such that Ric= λg , andλ is called the
Ricci curvature of (M, g) (see also p. 7 of[6]).

Remark 3.1. Concerning to this notion, it should be pointed out:



F. Dobarro, B.Ünal / Journal of Geometry and Physics 55 (2005) 75–106 85

(1) If (M, g) is Einstein andn ≥ 3 , thenλ is constant andλ = τ/n , whereτ is the constant
scalar curvature of (M, g).

(2) If (M, g) is Einstein andn = 2 , thenλ is not necessarily constant.
(3) If (M, g) has constant sectional curvaturek, then (M, g) is Einstein withλ = k(n− 1)

and has constant scalar curvatureτ = n(n− 1)k .
(4) (M, g) is Einstein with Ricci curvatureλ andn = 3 , then (M, g) is a space of constant

(sectional) curvature K= λ/2 .
(5) If (M, g) is a Lorentzian manifold then (M, g) is Einstein if and only if Ric(v, v) = 0 ,

for any null vector fieldv onM.

By usingProposition 2.5, we easily obtain theRicci curvatureof Lorentzian multiply
warped products, (M, g) of the above form.

Proposition 3.2. LetM = I × b1F1 × · · · × bmFm be a multiply generalized Robertson–
Walker space–time with the metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm also let ∂

∂t
∈ X(I)

andvi ∈ X(Fi) , for anyi ∈ {1, . . . , m} . If v =∑m
i=1 vi ∈ X(F ) , then

Ric

(
∂

∂t
+ v,

∂

∂t
+ v

)

=
m∑
i=1


RicFi (vi, vi) +


bib′′

i + (si − 1)(b′
i)

2 + bib
′
i

m∑
k=1,k 
=i

sk
b′
k

bk




× gFi (vi, vi) − si
b′′
i

bi


 .

Proof. By substitutingX̄ = ∂
∂t

+∑m
i=1 vi and Ȳ = ∂

∂t
+∑m

i=1 vi and by noting that

gradBbi = −b′
i , gB

(
∂
∂t
, ∂
∂t

) = −1 , gB(gradBbi,gradBbi) = −(b′
i)

2 , Hbi
B

(
∂
∂t
, ∂
∂t

) = b′′
i ,

�Bbi = −b′′
i and RicB

(
∂
∂t
, ∂
∂t

) = 0 and by usingProposition 2.5, we obtain the result.

The following result can be easily proved by substitutingvj = 0 for any j ∈
{1, . . . , m}\{i} and vi 
= 0 , in Proposition 3.2along with the method of separation of
variables.

Theorem 3.3. Let M = I × b1F1 × · · · × bmFm be a multiply generalized Robertson–
Walker space–time with the metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm . The space–time

(M, g) is Einstein with Ricci curvatureλ if and only if the following conditions are satisfied
for anyi ∈ {1, . . . , m}

(1) each fiber(Fi, gFi ) is Einstein with Ricci curvatureλFi for anyi ∈ {1, . . . , m} ,

(2)
∑m

i=1 si
b′′
i

bi
= λ , and

(3) λFi + bib
′′
i + (si − 1)(b′

i)
2 + bib

′
i

∑m
k=1,k 
=i sk

b′
k

bk
= λb2

i .
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Remark 3.4. In Theorem 3.3, Eq. (3) can be expressed in different forms and here we want
to present some of them. By applyingEq. (2.2), we can have

λFi

b2
i

+ 1

si

(bsii )′′

b
si
i

+ b′
i

bi

m∑
k=1,k 
=i

sk
b′
k

bk
= λ, (EgRW -i )

or equivalently:

λFi

b2
i

+ b′′
i

bi
− (b′

i)
2

b2
i

+ b′
i

bi

m∑
k=1

sk
b′
k

bk
= λ. (EgRW -ii )

3.2. Constant scalar curvature

It is possible to obtain equivalent expressions for the scalar curvature inCorollary 2.7,
namely the following just follows fromEq. (2.2):

τ =
m∑
i=1

[
si
b′′
i

bi
+ (bsii )′′

b
si
i

]
+

m∑
i=1

τFi

b2
i

+
m∑
i=1

m∑
k=1,k 
=i

sksi
b′
i

bi

b′
k

bk
. (scgRW -i )

Since 2si 
= 0 andsi + s2i = si(si + 1) 
= 0 , byLemma 2.8, there results

τ =
m∑
i=1

4si
si + 1

(b(si+1)/2
i )′′

b
(si+1)/2
i

+
m∑
i=1

τFi

b2
i

+
m∑
i=1

m∑
k=1,k 
=i

sksi
b′
i

bi

b′
k

bk
. (scgRW -ii )

Thus, definingψi = b
(si+1)/2
i , results

τ =
m∑
i=1

4si
si + 1

ψ′′
i

ψi
+

m∑
i=1

τFi

ψ
4/(si+1)
i

+
m∑
i=1

m∑
k=1,k 
=i

sksi
(ψ2/(si+1)

i )′

ψ
2/(si+1)
i

(ψ2/(sk+1)
k )′

ψ
2/(sk+1)
k

. (scgRW -iii )

Note that whenm = 1 this relation is exactly that obtained in[24,26]when the base has
dimension 1.

The following result just follows from the method of separation of variables and the fact
that eachτFi : Fi → R is a function defined onFi , for anyi ∈ {1, . . . , m} .

Proposition 3.5. LetM = I × b1F1 × · · · × bmFm be a multiply generalized Robertson–
Walker space–time with the metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm . If the space–time

(M,g) has constant scalar curvatureτ , then each fiber (Fi, gFi ) has constant scalar curvature
τFi , for anyi ∈ {1, . . . , m} .

As one can notice from the above formula, it is extremely hard to determine general
solutions for warping functions which produce an Einstein, or with constant scalar curva-
ture multiply generalized Robertson–Walker space–time. Note that non-linear second order
differential equations need to be solved accordingTheorem 3.3. Further note that there is
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only one differential equation andmdifferent warping functions inCorollary 2.7. Therefore
instead of giving a general answer to the existence of warping functions to get an Einstein,
or with constant scalar curvature, space–time, we simplify this problem and consider some
specific cases in mentionedSections 4 and 5.

4. Generalized Kasner space–time

In this section we give an extension of Kasner space–times and consider their scalar and
Ricci curvatures.

Definition 4.1. A generalized Kasner space–time (M, g) is a Lorentzian multiply warped
product of the formM = I × ϕp1F1 × · · · × ϕpmFm with the metricg = −dt2 ⊕ ϕ2p1gF1 ⊕
· · · ⊕ ϕ2pmgFm , whereϕ : I → (0,∞) is smooth andpi ∈ R , for anyi ∈ {1, . . . , m} and
alsoI = (t1, t2) with −∞ ≤ t1 < t2 ≤ ∞ .

Notice that a Kasner space–time can be obtained out of a form defined above by taking
ϕ = Id(0,∞) with m = 3 andI = (0,∞) , whereId(0,∞) denotes for the identity function
on (0,∞) (see[40]).

From now on, for an arbitrary generalized Kasner space–time of the form in
Definition 4.1, we introduce the following parameters

ζ :=
m∑
l=1

slpl and η :=
m∑
l=1

slp
2
l . (ζ; η )

Remark 4.2. Note thatζ 
= 0 impliesη 
= 0 and in this case, definingS =∑m
l=1 sl , results

η

ζ2 ≥ 1
S

. The latter is for example consequence of the Hölder inequality (compare with p.
186 of[35]).

By applyingTheorem 3.3, we can easily state the following result and later we will examine
the solvability of the differential equations therein.

Proposition 4.3. LetM = I × ϕ1F1 × · · · × ϕmFm be a generalized Kasner space–time
with the metricg = −dt2 ⊕ ϕ2p1gF1 ⊕ · · · ⊕ ϕ2pmgFm . Then the space–time(M, g) is
Einstein with Ricci curvatureλ if and only if

(1) each fiber(Fi, gFi ) is Einstein with Ricci curvatureλFi for anyi ∈ {1, . . . , m} ,

(2) λ =
m∑
l=1

sl
(ϕpl )′′

ϕpl
= (η− ζ)

(ϕ′)2

ϕ2 + ζ
ϕ′′

ϕ
, and

(3)
λFi
ϕ2pi

+ pi

[
(ζ − 1)(ϕ′)2

ϕ2 + ϕ′′
ϕ

]
= λ .
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Remark4.4. Moreover, if inProposition 4.3we assume thatζ 
= 0 also, then byRemark 4.2
is η 
= 0 . Hence, (3) is equivalent to

λFi

ϕ2pi
+ pi

ζ

(ϕζ)′′

ϕζ
= λ, (E(3)

gK-i )

and (2) is equivalent to

λ = ζ2

η

(ϕ
η
ζ )′′

ϕ
η
ζ

. (E(2)
gK-i )

Proof (of Proposition 4.3andRemark 4.4). In order to prove (3), note that Eq. (EgRW -i )
says

λFi

ϕ2pi
+ 1

si

(ϕpisi )′′

ϕpisi
+ (ϕpi )′

ϕpi

m∑
k=1,k 
=i

sk
(ϕpk )′

ϕpk
= λ.

Hence, byEq. (2.2):

λFi

ϕ2pi
+ pi(pisi − 1)

(ϕ′)2

ϕ2 + pi
ϕ′′

ϕ
+ pi

ϕ′

ϕ

m∑
k=1,k 
=i

skpk
ϕ′

ϕ
= λ

and from here

λFi

ϕ2pi
+ pi


(pisi − 1) +

m∑
k=1,k 
=i

skpk


 (ϕ′)2

ϕ2 + pi
ϕ′′

ϕ
= λ.

So

λFi

ϕ2pi
+ pi

[(
−1 +

m∑
k=1

skpk

)
(ϕ′)2

ϕ2 + ϕ′′

ϕ

]
= λ

and by the definition ofζ

λFi

ϕ2pi
+ pi

[
(ζ − 1)

(ϕ′)2

ϕ2 + ϕ′′

ϕ

]
= λ.

If furthermoreζ 
= 0 , applying againEq. (2.2), results(E(3)
gK-i ).

On the other hand, from (2) ofTheorem 3.3

λ =
m∑
l=1

sl
(ϕpl )′′

ϕpl



F. Dobarro, B.Ünal / Journal of Geometry and Physics 55 (2005) 75–106 89

and byLemma 2.8(a):

λ = (η− ζ)
(ϕ′)2

ϕ2 + ζ
ϕ′′

ϕ
.

Hence, ifζ 
= 0 and as consequenceη 
= 0 , applyingLemma 2.8(b), results(E(2)
gK-i ).

Note that, from now on and also including the previous result, when we applyLemma 2.8,
we denote the usual derivative in equations by means of the prime notation.

Remark 4.5. Note that the conditionsζ 
= 0 andη 
= 0 agree with the conditions usually
imposed in the classical Kasner space–times, namelyp1 + p2 + p3 = 1 andp2

1 + p2
2 +

p2
3 = 1 (see[46]). It is easy to show that the unique possibility to construct an Einstein

classical Kasner manifold or a constant scalar curvature classical Kasner manifold with
p1 + p2 + p3 = 0 is p1 = p2 = p3 = 0 , so that we have just a usual product. Indeed,
consideringϕ(t) = t , it is possible to applyProposition 4.3and laterProposition 4.11,
respectively.

Corollary 4.6. Under the hypothesis ofProposition 4.3, along withζ 
= 0 and η 
= 0 .
Assume also that for all i, ζ − pi 
= 0 andη− piζ 
= 0 .Then, M is Einstein if and only if
for anyi ∈ {1, . . . , m} , (Fi, gFi ) is Einstein Ricci curvatureλFi and

(ζ − pi)2

η− piζ

ψ′′

ψ
= λFi

ψ((ζ−pi)/(η−piζ))2pi , (4.1)

where0 < ψ := ϕ(η−piζ)/(η−pi) .

Proof. Indeed, from equations(E(3)
gK-i ) and(E(2)

gK-i ):

λFi

ϕ2pi
= ζ2

η

(ϕη/ζ)′′

ϕη/ζ
− pi

ζ

(ϕζ)′′

ϕζ
.

Thus, since for alli, ζ − pi 
= 0 andη− piζ 
= 0 , then applyingLemma 2.8, the result just
follows.

Example 4.7. Under the conditions of the classical Kasner metrics,m = 3 , p1 + p2 +
p3 = 1 andp2

1 + p2
2 + p2

3 = 1 , we haveλFi = 0 , ζ = 1 andη = 1 . Hence the hypothesis
ζ − pi 
= 0 andη− piζ 
= 0 , for all i, implies thatpi 
= 1 for all i. In this case, Eq. (4.1) is
equivalent to 0< ψ = ϕandψ′′ = 0 , i.e., 0< ϕ(t) = at + bwitha, b ≥ 0 anda2 + b2 
= 0
. Hence, from Eq.(E(2)

gK-i ), (0,+∞) ×ϕp1 R×ϕp2 R×ϕp3 R is Ricci flat space–time.

Corollary 4.8. Let us assume the hypothesis ofCorollary 4.6and that for all i, (Fi, gFi ) is
Ricci flat. Then, M is Einstein if and only ifψ′′ = 0with

0 < ψ := ϕ(η−piζ)/(η−pi) for all i.
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Proof. It is an immediate consequence ofCorollary 4.6.

Corollary 4.9. Assume that(Fi, gFi ) is Ricci flat for all i. Let alsōζ, η̄ ∈ R \ {0} such that
ζ̄2 = η̄ andψ(t) = at + bwitha, b ≥ 0anda2 + b2 > 0 . If ζ = ζ̄ , η = η̄ , ζ − pi 
= 0and
η− piζ 
= 0 for all i , thenM = (0,∞) ×ϕp1 F1 × · · · ×ϕpm Fm is a Ricci flat space–time,
whereϕ = ψ1/ζ .

Proof. It is sufficient to applyCorollary 4.8andProposition 4.3.

Remark 4.10.Note thatCorollary 4.9contains the classical Kasner metrics except the case
in which at least onepi = 1 (really at most one could be 1 becauseη = p2

1 + p2
2 + p2

3 = 1
).

The following just follows fromCorollary 2.7and again we discuss the existence of a
solution for the differential equation below.

Proposition 4.11. LetM = I × ϕ1F1 × · · · × ϕmFm be a generalized Kasner space–time
with the metricg = −dt2 ⊕ ϕ2p1gF1 ⊕ · · · ⊕ ϕ2pmgFm . Then the space–time(M, g) has
constant scalar curvatureτ if and only if

(1) each fiber(Fi, gFi ) has constant scalar curvatureτFi for anyi ∈ {1, . . . , m} , and

(2) τ = 2ζ ϕ
′′
ϕ

+ [(ζ − 2)ζ + η] (ϕ′)2
ϕ2 +∑m

i=1
τFi
ϕ2pi

,

Remark 4.12. If ζ 
= 0 , then (2) inProposition 4.11is equivalent to

τ = 4ζ2

ζ2 + η

(ϕ(ζ2+η)/(2ζ))′′

ϕ(ζ2+η)/(2ζ)
+

m∑
i=1

τFi

ϕ2pi
.

Proof of Proposition 4.11 and Remark 4.12. For eachi ∈ {1, . . . , m} , let γi = pi
si+1

2
andψi = ϕγi , then by(scgRW -iii ) andEq. (2.2)there results

τ =
m∑
i=1

4si
si + 1

γi

[
(γi − 1)

(ϕ′)2

ϕ2 + ϕ′′

ϕ

]
+

m∑
i=1

τFi

ϕ(4/(si+1))γi

+
m∑
i=1

m∑
k=1,k 
=i

sksi
2γi
si + 1

2γk
sk + 1

(ϕ′)2

ϕ2 .

Then we have

τ =
m∑
i=1

2sipi

[(
pi
si + 1

2
− 1

)
(ϕ′)2

ϕ2 + ϕ′′

ϕ

]
+

m∑
i=1

τFi

ϕ2pi

+
m∑
i=1

m∑
k=1,k 
=i

sksipipk
(ϕ′)2

ϕ2
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= 2ζ
ϕ′′

ϕ
+

m∑
i=1

sipi


2

(
pi
si + 1

2
− 1

)
+

m∑
k=1,k 
=i

skpk


 (ϕ′)2

ϕ2 +
m∑
i=1

τFi

ϕ2pi

= 2ζ
ϕ′′

ϕ
+

m∑
i=1

sipi[(ζ − 2) + pi]
(ϕ′)2

ϕ2 +
m∑
i=1

τFi

ϕ2pi

= 2ζ
ϕ′′

ϕ
+ [(ζ − 2)ζ + η]

(ϕ′)2

ϕ2 +
m∑
i=1

τFi

ϕ2pi
.

Since (ζ − 2)ζ + η+ 1 = (ζ − 1)2 + η = 0 if and only ifpi = 0 for all i ∈ {1, . . . , m} , if
at least onepi 
= 0 there results byEq. (2.2)

τ = (2ζ − 1)
ϕ′′

ϕ
+ 1

(ζ − 1)2 + η

(ϕ(ζ−1)2+η)′′

ϕ(ζ−1)2+η +
m∑
i=1

τFi

ϕ2pi
.

Hence, ifζ 
= 0 , applyingLemma 2.8:

τ = 4ζ2

ζ2 + η

(ϕ(ζ2+η)/(2ζ))′′

ϕ(ζ2+η)/(2ζ)
+

m∑
i=1

τFi

ϕ2pi
.

Corollary 4.13. Under the hypothesis ofProposition 4.11andζ 
= 0 .Then, by changing
variables asu = ϕ(ζ2+η)/(2ζ) , we conclude that the space–time M has constant scalar
curvatureτ if and only if

τ = 4ζ2

ζ2 + η

u′′

u
+

m∑
i=1

τFi

u4ζ/(ζ2+η)pi

or equivalently

− 4

1 + η

ζ2

u′′ = −τu+
m∑
i=1

τFiu
1−4/(1+η/ζ2)(pi/ζ).

Remark 4.14. If ζ 
= 0 and there is only one fiber, i.e., in a standard warped product, the
equation in the previous corollary corresponds to those obtained in[24,26].

Example 4.15. Let us assume thatζ 
= 0 and eachFi is scalar flat, namelyτFi = 0 . Hence,
equation in the previous corollary is written as

− 4ζ2

ζ2 + η
u′′ = −τu.
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Thus all the solutions have the form

u(t) =




A e
i

√
−τ
ζ2 + η

2ζ2 t

+ Be
−i

√
−τ
ζ2 + η

2ζ2 t

if τ < 0,

At + B if τ = 0,

A e

√
−τ
ζ2 + η

2ζ2 t

+ Be

√
−τ
ζ2 + η

2ζ2 t

if τ > 0

with constantsA andB such thatu > 0 .
If ζ = 0 , byProposition 4.11, we look for positive solutions of the equation

τ = η
(ϕ′)2

ϕ2 , ϕ > 0.

Sinceη > 0 , the latter is equivalent to

(
ϕ

√
τ√
η

+ ϕ′
)(

ϕ

√
τ√
η

− ϕ′
)

= 0, ϕ > 0.

Solutions of the equation above are given as:

ϕ(t) = C e±(
√
τ/

√
η)t ,

whereC is a positive constant.

Note that this example include the situation of the classical Kasner space–times in the
framework of scalar curvature. Compare with the results about Einstein classical Kasner
metrics inRemark 4.5andExample 4.7.

5. Four-dimensional space–time models

We first give a classification of four-dimensional warped product space–time models and
then consider Ricci tensors and scalar curvatures of them.

Definition 5.1. Let M = I × b1F1 × · · · × bmFm be a multiply generalized Robertson–
Walker space–time with metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm .

• (M, g) is said to be of Type (I) ifm = 1 and dim(F ) = 3 .
• (M, g) is said to be of Type (II) ifm = 2 and dim(F1) = 1 and dim(F2) = 2 .
• (M,g) is said to be of Type (III), ifm = 3 and dim(F1) = 1 , dim(F2) = 1 and dim(F3) =

1 .
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Note that Type (I) contains the Robertson–Walker space–time. The Schwarzschild black
hole solution can be considered as an example of Type (II). Type (III) includes the Kasner
space–time.

5.1. Type (I)

LetM = I ×b F be a Type (I) warped product space–time with metricg = −dt2 ⊕ b2gF
. Then the scalar curvatureτ of (M, g) is given as

τ = τF

b2 + 6

(
b′′

b
+ (b′)2

b2

)
.

The problem of constant scalar curvatures of this type of warped products, known as general-
ized Robertson–Walker space–times is studied in[29], indeed, explicit solutions to warping
function are obtained to have a constant scalar curvature.

If v is a vector field onF andx̄ = ∂
∂t

+ v , then

Ric(x̄, x̄) = RicF (v, v) + (bb′′ + 2(b′)2)gF (v, v) − 3
b′′

b
.

In [2], explicit solutions are also obtained for the warping function to make the space–
time as Einstein when the fiber is also Einstein.

5.2. Type (II)

Let M = I × b1F1 × b2F2 be a Type (II) warped product space–time with metricg =
−dt2 ⊕ b2

1gF1 ⊕ b2
2gF2 . Then the scalar curvatureτ of (M, g) is given as

τ = τF2

b2
2

+ 2
b′′

1

b1
+ 4

b′′
2

b2
+ 2

(
b′

2

b2

)2

+ 4
b′

1b
′
2

b1b2
.

Note thatτF1 = 0 , since dim(F1) = 1 .
If vi is a vector field onFi , for anyi ∈ {1,2} andx̄ = ∂

∂t
+ v1 + v2 , then

Ric(x̄, x̄) = RicF2(v2, v2) − b′′
1

b1
− b′′

2

b2
+
(
b1b

′′
1 + 2

b1b
′
1b

′
2

b2

)
gF1(v1, v1)

+
(
b2b

′′
2 + (b′

2)2 + b2b
′
2b

′
1

b1

)
gF2(v2, v2)

Note that RicF1 ≡ 0 , since dim(F1) = 1 .

• Classification of Einstein Type (II) generalized Kasner space–times
LetM = I ×ϕp1 F1 ×ϕp2 F2 be an Einstein Type (II) generalized Kasner space–time.

Then the parameters introduced beforeProposition 4.3are given byζ = p1 + 2p2 ,
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η = p2
1 + 2p2

2 . Hence the latter arises


(η− ζ) (ϕ′)2
ϕ2 + ζ

ϕ′′
ϕ

= λ,

p1

[
(ζ − 1)(ϕ′)2

ϕ2 + ϕ′′
ϕ

]
= λ,

λF2
ϕ2p2

+ p2

[
(ζ − 1)(ϕ′)2

ϕ2 + ϕ′′
ϕ

]
= λ.

(E-K-II )

The last equation implies in particular thatλF2 is constant.
Let the system

(ϕσ)′′ = νϕσ, 0 < ϕ, (ϕσ ; ν )

whereν andσ are real parameters. All its solutionsϕσ have the form

ϕσ(t) =



A ei

√−νt + Be−i
√−νt if ν < 0,

At + B if ν = 0,

A e
√
νt + Be−√

νt if ν > 0

with constantsA andB such thatϕ > 0 .
Furthermore, let the (ϕσ ; ν) modified system


(ϕσ)′′ = νϕσ,

(ϕσ)′]2 = ν(ϕσ)2,

ϕ > 0.

(ϕσ ; ν; ∗ )

Note thatν must be> 0 . It is easy to verify that all its solutions are given by

ϕσ(t) = A e±√
νt,

whereA is a positive constant.
Consider now two cases, namely

ζ = 0 : first of all, note thatp2 = −1
2p1 andη = 3

2p
2
1 .

η = 0 : thus,pi = 0 , for all i and 0= λ = λF2 . Thus the corresponding metric
is

−dt2 + gF1 + gF2.

η 
= 0 : thenp1 
= 0 ,p2 
= 0 and


η
(ϕ′)2
ϕ2 = λ,

p1

[
− (ϕ′)2

ϕ2 + ϕ′′
ϕ

]
= λ,

λF2
ϕ−p1

− 1
2p1

[
− (ϕ′)2

ϕ2 + ϕ′′
ϕ

]
= λ.

(E-K-IIi )

If

λF2 = 0 : thenλ = 0 andϕ is constantϕ0 . Thus the corresponding metric is

−dt2 + ϕ
2p1
0 gF1 + ϕ

2p2
0 gF2.
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λF2 
= 0 : then
λF2
ϕ−p1

= 3
2λ , as consequenceϕ is constant and considering

the system this gives a contradiction.

ζ 
= 0 : henceη 
= 0 and byRemark 4.4the system reduces to


ζ2

η
(ϕζ(η/ζ

2))′′

ϕζ(η/ζ
2)

= λ,

p1
ζ

(ϕζ)′′
ϕζ

= λ,

λF2
ϕ2p2

+ p2
ζ

(ϕζ)′′
ϕζ

= λ.

(E-K-IIii )

η = ζ2 : sop1 
= 0 and eitherp2 = 0 orp2 = −2p1 . If

λ = 0 : thenλF2 = 0 . Thus, the corresponding metric is

−dt2 + ϕ2p1gF1 + ϕ2p2gF2,

whereϕ satisfies (ϕζ; 0) .
λ 
= 0 : thenζ = p1 andp2 = 0 . Hence, by the third equationλF2 = λ .

Thus, the corresponding metric is

−dt2 + ϕ2ζgF1 + gF2,

whereϕ satisfies (ϕζ; λ) .

η 
= ζ2 : thenp2 
= 0 andp1
p2

λF2
ϕ2p2

=
(
p1
p2

− 1
)
λ . So, if

λ = 0 : then the first equation implies,ϕζ = (At + B)ζ
2/η and (ϕζ)′′ =

ζ2

η

(
ζ2

η
− 1
)

(At + B)ζ
2/η−2A2 .

λF2 = 0 : then applying the third equation resultsA = 0 , soϕζ is con-
stant andϕ is a positive constantϕ0 . Thus the corresponding metric
is

−dt2 + ϕ
2p1
0 gF1 + ϕ

2p2
0 gF2.

λF2 
= 0: thenp1 = 0 , hencep2 = ζ
2 , η

ζ2 = 1
2 . So, by the third equation

λF2 = −A2 < 0 . Thus the corresponding metric is

−dt2 + gF1 + ϕ2p2gF2

with ϕ as above.

λ 
= 0 : thenp1 
= 0 , hence
λF2
ϕ2p2

=
(

1 − p1
p2

)
λ .

λF2 = 0 : thenp1 = p2 and the system can be reduced to

3
(ϕζ(1/3))′′

ϕζ(1/3) = 1

3

(ϕζ)′′

ϕζ
= λ,

which is equivalent to the solvable system (ϕζ; 3λ; ∗) . Note thatλmust
be> 0 .
λF2 
= 0 : thenϕ is constant and this gives a contradiction.

Table 1specifies the only possible Einstein generalized Kasner space–times of Type
(II) with the corresponding parameters. The last column indicates the functionϕ or the
system which it satisfies.

Note thatCorollary 4.9cannot be applied in the situations above.
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• Classification of the Type (II) generalized Kasner space–times with constant scalar
curvature

LetM = I ×ϕp1 F1 ×ϕp2 F2 be a Type (II) generalized Kasner space–time with con-
stant scalar curvature. Then the parameters introduced beforeProposition 4.11satisfy
ζ = p1 + 2p2 , η = p2

1 + 2p2
2 and

τ = 2ζ
ϕ′′

ϕ
+ [(ζ − 2)ζ + η]

(ϕ′)2

ϕ2 + τF2

ϕ2p2
. (csc-K-II.a )

Note thatτF2 must be constant if there exist a positive solution of(csc-K-II.a ) (see also
Proposition 3.5). We consider two principal cases with different subcases.

ζ = 0 : if

η = 0 : thenp1 = p2 = 0 , τ = τF2 and the corresponding metric is

−dt2 + gF1 + gF2.

η 
= 0: thenp2 = −1
2p1 andη = 3

2p
2
1 = 6p2

2 . The equation(csc-K-II.a )reduces
to

τ = η
(ϕ′)2

ϕ2 + τF2

ϕ2p2
. (csc-K-II.b )

ζ 
= 0 : impliesη 
= 0 and considering 0< u = (ϕζ)(1+η/ζ2)/2 , Corollary 4.13arises
the relation

− 4

1 + η

ζ2

u′′ = −τu+ τF2u
1−4/(1+η/ζ2)(p2/ζ). (csc-K-II.c )

η = ζ2 : thenp1 
= 0 , eitherp2 = 0 orp2 = −2p1 , andu = ϕζ .

τF2 = 0 : so the equation reduces to

−2u′′ = −τu.
τF2 
= 0 : if

p2 = 0 : the equation reduces to

−2u′′ = −(τ − τF2)u.

p2 = −2p1 :

−2u′′ = −τu+ τF2u
−1/3.

η 
= ζ2 : thenp2 
= 0 and η

ζ2 ≥ 1
3 .

τF2 = 0 :

− 4

1 + η

ζ2

u′′ = −τu (5.1)

τF2 
= 0 :

− 4

1 + η

ζ2

u′′ = −τu+ τF2u
1−4/(1+η/ζ2)(p2/ζ). (csc-K-II.c )
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Note that a particular subcase isη
ζ2 = 1

3 . In fact, in this case,p1 = p2 = ζ
3

(seeRemark 4.2) and the latter equation reduces to the non-homogeneous
linear ordinary differential equation

−3u′′ = −τu+ τF2.

Synthetically, remembering that in each case the corresponding metric may be written
as−dt2 + ϕ2p1gF1 + ϕ2p2gF2 , we find that the only possibilities to have constant scalar
curvature in a generalized Kasner space–time of type (II) are generated by where the condi-
tions forτ must be imposed by the existence of positive solutions of the ordinary differential
equations of the last column, on the corresponding intervalI.

5.3. Type (III)

LetM = I × b1F1 × b2F2 × b3F3 be a type (III) warped product space–time with metric
g = −dt2 ⊕ b2

1gF1 ⊕ b2
2gF2 ⊕ b2

3gF3 . Then the scalar curvatureτ of (M, g) is given as

τ = 2

(
b′′

1

b1
+ b′′

2

b2
+ b′′

3

b3
+ b′

1b
′
2

b1b2
+ b′

2b
′
3

b2b3
+ b′

1b
′
3

b1b3

)
.

Note thatτFi = 0 , since dim(Fi) = 1 , for anyi ∈ {1,2,3} .
If vi is a vector field onFi , for any i ∈ {1,2,3} and x̄ = ∂

∂t
+ v1 + v2 + v3 ,

then

Ric(x̄, x̄) =
(
b1b

′′
1 + b1b

′
1b

′
2

b2
+ b1b

′
1b

′
3

b3

)
gF1(v1, v1)

+
(
b2b

′′
2 + b2b

′
2b

′
1

b1
+ b2b

′
2b

′
3

b3

)
gF2(v2, v2)

+
(
b3b

′′
3 + b3b

′
3b

′
1

b1
+ b3b

′
3b

′
2

b2

)
gF3(v3, v3) − b′′

1

b1
− b′′

2

b2
− b′′

3

b3
.

Note that RicFi ≡ 0 , since dim(Fi) = 1 , for anyi ∈ {1,2,3} .

• Classification of Einstein Type (III) generalized Kasner space–times
Let M = I ×ϕp1 F1 ×ϕp2 F2 ×ϕp3 F3 be an Einstein Type (III) generalized Kasner

space–time. Then the parameters introduced beforeProposition 4.3satisfy ζ = p1 +
p2 + p3 , η = p2

1 + p2
2 + p2

3 . Hence the latter arises


(η− ζ) (ϕ′)2
ϕ2 + ζ

ϕ′′
ϕ

= λ,

p1

[
(ζ − 1)(ϕ′)2

ϕ2 + ϕ′′
ϕ

]
= λ,

p2

[
(ζ − 1)(ϕ′)2

ϕ2 + ϕ′′
ϕ

]
= λ,

p3

[
(ζ − 1)(ϕ′)2

ϕ2 + ϕ′′
ϕ

]
= λ.

(E-K-III )
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Note that adding the last three equations, there results

ζ

[
(ζ − 1)

(ϕ′)2

ϕ2 + ϕ′′

ϕ

]
= 3λ. (5.2)

Consider now two cases, namely

ζ = 0 : then applying(5.2), we obtainλ = 0 .

η = 0 : thuspi = 0 for all i. Hence the corresponding metric is

−dt2 + gF1 + gF2 + gF3.

η 
= 0 : the system reduces to

η

(ϕ′)2
ϕ2 = 0,

pi

[
− (ϕ′)2

ϕ2 + ϕ′′
ϕ

]
= 0 for all i = 1,2,3

(E-K-IIIi )

thenϕ is constantϕ0 . Thus the corresponding metric is

−dt2 + ϕ
2p1
0 gF1 + ϕ

2p2
0 gF2 + ϕ

2p3
0 gF3.

ζ 
= 0 : thusη 
= 0 and byRemark 4.4the system reduces to

ζ2

η

(ϕζ(η/ζ
2))′′

ϕζ(η/ζ
2)

= λ,

pi

ζ

(ϕζ)′′

ϕζ
= λ for all i = 1,2,3.

(E-K-IIIii )

Adding the last three equations in(E-K-IIIii ) , we obtain that

(ϕζ)′′

ϕζ
= 3λ. (5.3)

η = ζ2 : then(5.2) and (5.3), giveλ = 0 . Thus, the corresponding metric is

−dt2 + ϕ2p1gF1 + ϕ2p2gF2 + ϕ2p3gF3,

whereϕ satisfies (ϕζ; 0) .
η 
= ζ2 : then at least twopi ’s are 
= 0 . So if

λ = 0 : then the first equation impliesϕζ = (At + B)ζ
2/η and (ϕζ)′′ =

ζ2

η

(
ζ2

η
− 1
)

(At + B)ζ
2/η−2A2 . Then by(5.3) resultsA = 0 , soϕζ is

constant andϕ is a positive constantϕ0 . Thus the corresponding metric is

−dt2 + ϕ
2p1
0 gF1 + ϕ

2p2
0 gF2 + ϕ

2p3
0 gF3.

λ 
= 0 : then allpi ’s are 
= 0 and all of them are equals, so thatp1 = p2 =
p3 = ζ

3 . Soη = ζ2

3 and η

ζ2 = 1
3 . Thus the system reduces to

3
(ϕζ(1/3))′′

ϕζ(1/3) = 1

3

(ϕζ)′′

ϕζ
= λ,

which is equivalent to the solvable system (ϕζ; 3λ; ∗) . Note thatλ must
be> 0 .
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Table 3specifies the only possible Einstein generalized Kasner space–times of
type (III) with the corresponding parameters. Like for the table of Type (II), the
last column indicates the functionϕ or the system which it satisfies.

This example may be easily generalized to the situation all theFi ’s are Ricci
flat, consideringS =∑m

i=1 si > 1 instead of 3.
• Classification of Type (III) generalized Kasner space–times with constant scalar

curvature
Let M = I ×ϕp1 F1 ×ϕp2 F2 ×ϕp3 F3 be a Type (III) generalized Kasner manifold

with constant scalar curvature. Then the parameters introduced beforeProposition 4.11
satisfyζ = p1 + p2 + p3 , η = p2

1 + p2
2 + p2

3 . Thus, this case is already included in the
analysis ofExample 4.15.

We will close this section by an example and the following comment which gives some
preliminary ideas about our future plans on this topic (see also the last section for details).

Example 5.2. LetM = I ×ϕp1 S3 ×ϕp2 S2 be a generalized Kasner manifold with constant
scalar curvature. Then the parameters introduced beforeProposition 4.11are given by
ζ = 3p1 + 2p2 , η = 3p2

1 + 2p2
2 . Consider nowp1 = 1 andp2 = −1 , thenζ = 1 and

η = 5 . Hence, applyingCorollary 4.13the latter conditions arise foru = ϕ3 the problem

− 2
3u

′′ + τu = τS3u
1−2/3 + τS2u

1+2/3, u > 0, (5.4)

whereτS3, τS2 > 0 are the constant scalar curvatures of the corresponding spheres. Note
that the equation in(5.4)has always the constant solution zero and there existsτ1 > 0 such
that forτ = τ1 there is only one constant solution of(5.4)and for anyτ > τ1 there are two
constant solutions of(5.4), so that there exists a range ofτ ’s, (τ1,+∞) , where the problem
(5.4)has multiplicity of solutions; while there is no constant solutions whenτ < τ1 .

On the other hand, as inExample 5.2, consideringS3 instead ofS2 with the same values of
p1 andp2 , i.e.,M = I ×ϕp1 S3 ×ϕp2 S3 , resultsζ = 3p1 + 3p2 = 0 ,η = 3p2

1 + 3p2
2 = 6

. Hence, applyingProposition 4.11the latter conditions arise the problem

− 6(ϕ′)2 = −τϕ2 + τS3 + τS3ϕ
4, ϕ > 0. (5.5)

The equation in(5.5) does not have the constant solution zero. Furthermore there is no
constant solution of(5.5)if τ < 2τS3 , there is only one constant solution of(5.5)if τ = 2τS3

and two constant solutions of(5.5) if τ > 2τS3 .

The cases considered above are just some examples for the different types of differential
equations involved in the problem of constant scalar curvature when the dimensions, cur-
vatures and parameters have different values. In a future article, we deal with the problem
of constant scalar curvature of a pseudo-Riemannian generalized Kasner manifolds with
a base of dimension greater than or equal to 1. This problem carries to nonlinear partial
differential equations with concave–convex nonlinearities like in(5.4), among others. Non-
linear elliptic problems with such nonlinearities have been extensively studied in bounded
domains ofRn , after the central article of Ambrosetti et al.[1], in which the authors studied
the problem of multiplicity of solutions under Dirichlet conditions. The problem of constant
scalar curvature in a generalized Kasner manifolds with base of dimension greater than or
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equal to 1 is one of the first examples where those nonlinearities appear naturally. Another
related case is the base conformal warped products, studied in[26].

6. BTZ (2+ 1)-black hole solutions

1Now we consider BTZ (2+ 1 )-black hole solutions and give another characterization
of (BTZ) black hole solutions mentioned inSection 2(for further details see[8,9,42,59])
in order to apply the results obtained in this paper.

All the cases considered in[42], can be obtained applying theformal approach that
follows. By considering the corresponding square lapse functionN2 , the related three-
dimensional, (2+ 1) -space–time model can be expressed as a (2+ 1) multiply generalized
Robertson–Walker space–time, i.e.,

ds2 = −dt2 + b2
1(t) dx2 + b2

2(t) dφ2, (6.1)

where

b1(t) = N(F−1(t)), b2(t) = F−1(t) (6.2)

with

F (r) =
∫ r

a

1

N(µ)
dµ (6.3)

andF−1 the inverse function ofF (assuming that there exists) anda is an appropriate
constant that is most of the time related to the event horizon.

Recalling

1 = d

dt
(F ◦ F−1)(t) = F ′(F−1(t))(F−1)′(t), (6.4)

we obtain the following properties by applying the chain rule. Here, note that all the functions
depend on the variablet and the derivatives are taken with respect to the corresponding
arguments.

• b1 = N(b2) .
• b′

2 = N(F−1) = b1 .
• b′

2 = N(b2) .
• b′

1 = b′′
2 = N ′(b2)b′

2 = N ′(b2)b1 .
• b′′

1 = N ′′(b2)b′
2b1 +N ′(b2)b′

1 = N ′′(b2)b2
1 + (N ′(b2))2b1 .

Thus,

• b′′
1
b1

= N ′′(b2)b1 + (N ′(b2))2 = N ′′(b2)N(b2) + (N ′(b2))2

= (N ′N)′(b2) = 1
2(N2)′′(b2).

• b′′
2
b2

= N ′(b2)N(b2)
b2

= 1
2

(N2)′(b2)
b2

.

• b′
1
b1

b′
2
b2

= b′′
2
b2
.

(6.5)
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On the other hand, byCorollary 2.7applied to the metric(6.1), with s1 = s2 = 1 . The
scalar curvature of the corresponding space–time is given by

τ = 2

(
b′′

1

b1
+ b′′

2

b2
+ b′

1

b1

b′
2

b2

)
= 2

(
b′′

1

b1
+ 2

b′′
2

b2

)

= 2

(
N ′′(b2)N(b2) + (N ′(b2))2 + 2N ′(b2)

N(b2)

b2

)
= (N2)′′(b2) + 2

(N2)′(b2)

b2
.

(6.6)

Note that, the latter is an expression of the scalar curvature as an operator in the square
lapse function. Remember thatb2 = F−1 .

About the Ricci tensor, applying ourProposition 3.2andTheorem 3.3and by considering
agains1 = s2 = 1 , Theorem 3.3says that the metric(6.1) is Einstein withλ if and only if

b′′
1

b1
+ b′′

2

b2
= λ,

b′′
1

b1
+ b′

1

b1

b′
2

b2
= λ,

b′′
2

b2
+ b′

2

b2

b′
1

b1
= λ.

(6.7)

On the other hand by making use of(6.5), the system(6.7)is equivalent to (all the functions
are evaluated inr = b2 )

(N2)′′ + (N2)′

r
= 2λ,

(N2)′′ + (N2)′

r
= 2λ,

(N2)′

r
= λ,

(6.8)

or moreover to the following

(N2)′′ + (N2)′

r
= 2λ,

(N2)′

r
= λ.

(6.9)

Thus, we have

(N2)′′ = λ. (6.10)

Hence:

N2(r) = λ

2
r2 + c1r + c2 (6.11)

with c1 andc2 suitable constants. But, since (N2)′(r) = λr + c1 , the second equation of
(6.9) is verified if and only ifc1 = 0 . So, we have proved the following results.
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Proposition 6.1. Suppose that we have a(2 + 1) -Lorentzianmultiply warped product with
the metric given by(6.1),whereb1 andb2 satisfying both(6.2)and(6.3).The space–time is
Einstein with Ricci curvatureλ if and only if the square lapse functionN2 satisfies(6.11),
with c1 = 0 and a suitable constantc2 .

Notice that the static (BTZ) and the static (dS) black hole solutions considered in[42]
satisfyProposition 6.1. Thus they are Einstein multiply warped product space–times.

Remark 6.2. Remark that ifN2 satisfies(6.11)with c1 = 0 , then an application of(6.6)
gives the constancy of the scalar curvatureτ = 3λ , as desired. Note that this result agrees
with the ones obtained in[42].

Furthermore, the following just follows from the solution of the involved second order
linear ordinary differential equation arisen by the expression(6.6).

Proposition 6.3. Suppose that there is a(2 + 1) -Lorentzian multiply warped product with
the metric given by(6.1), whereb1 andb2 verifying (6.2) and (6.3). The space–time has
constant scalar curvatureτ = λ if and only if the square lapse functionN2 has the form

N2(r) = −c1
1

r
+ λ

6
r2 + c2, (6.12)

with suitable constantsc1 andc2 .

Note thatProposition 6.3agrees withRemark 6.2.

7. Conclusions

Now, we would like to summarize the content of the paper and to make some conclud-
ing remarks. In a brief, we studied expressions that relate the Ricci (respectively, scalar)
curvature of a multiply warped product with the Ricci (respectively, scalar) curvatures of
its base and fibers as well as warping functions.

By using expressions obtained in the paper, we proved necessary and sufficient conditions
for a multiply generalized Robertson–Walker space–time to be Einstein or to have constant
scalar curvature.

Furthermore, we introduced and considered a kind of generalization of Kasner space–
times, which is closely related to recent applications in cosmology where metrics of the
form

ds2 = −dt2 +
k∑
i=1

e2αi dx2
i with αi = αi(t) (7.1)

are frequently considered (see[39,69]; for other recent topics concerned Kasner type metrics
see for instance[23,36,44,45,58,63,73,74]). If each warping function e2αi is expressed as

e2αi = ϕ
2pi
i with ϕi = eαi/pi (7.2)
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for suitablepi ’s, then(7.1) takes the form

ds2 = −dt2 +
k∑
i=1

ϕ
2pi
i dx2

i . (7.3)

Our generalization of Kasner space–times corresponds exactly to the case in which theϕi ’s
are independent ofi. More explicitly,αi = piα in Eq. (7.2), with α = α(t) for a sufficiently
regular fixed function. Note that a classical Kasner space–time corresponds to the case of
α ≡ 1 (see[55] also).

By applyingLemma 2.8, we obtained useful expressions for the Ricci tensor and the
scalar curvature of generalized Robertson–Walker and generalized Kasner space–times.
These expressions allowed us to classify possible Einstein (respectively, with constant scalar
curvature) generalized Kasner space–times of dimension 4. We also obtained some partial
results for greater dimensions.

Finally, in order to study curvature properties of multiply warped product space–times
associated to the BTZ (2+ 1) -dimensional black hole solutions, we made applications
of the previously obtained curvature formulas. As a consequence, we characterized the
Einstein BTZ (respectively, with constant scalar curvature), in terms of the square lapse
function.

In forthcoming papers we plan to focus on a specific generalization of the structures
studied here, which is particularly useful in different fields such as relativity, extra-dimension
theories (Kaluza-Klein, Randall–Sundrum), string and super-gravity theories, spectrum of
Laplace–Beltrami operators onp-forms, among others. Roughly speaking, we will consider
a mixed structure between a multiply warped product and a conformal change in the base.
Naturally, our main interest is the study of curvature properties. As we have made progress
on this subject, we realized that these curvature related properties are interesting and worth
to study not only for the physical point of view (see for instance, the several recent works
of Gauntlett, Maldacena, Argurio, Schmidt, among many others), but also for exclusive
nonlinear partial differential equations involved. Indeed, the curvature related questions arise
problems of existence, uniqueness, bifurcation, study of critical points, etc. (seeExample 5.2
above and the different works of Aubin, Hebey, Yau, Ambrosetti, Choquet-Bruat among
others).
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104 F. Dobarro, B.Ünal / Journal of Geometry and Physics 55 (2005) 75–106
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